
MTH4100 Calculus I

Bill Jackson
School of Mathematical Sciences QMUL

Semester 1, 2012

Bill Jackson Calculus I



What is Calculus?

Calculus is the branch of mathematics which uses limits,

derivatives and integrals to ‘measure change’. It is based on the
real numbers and the study of functions of real variables:

for one variable see Calculus I

for several variables see Calculus II
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What is Calculus?

Calculus is the branch of mathematics which uses limits,

derivatives and integrals to ‘measure change’. It is based on the
real numbers and the study of functions of real variables:

for one variable see Calculus I

for several variables see Calculus II

Calculus provides powerful techniques for solving problems which
have widespread applications throughout science, economics, and
engineering. It has been formalised and extended into the
important branch of mathematics known as analysis.
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Real numbers and the real line

We can think of the real numbers as the set of all infinite decimals.
We denote this set by R.
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Real numbers and the real line

We can think of the real numbers as the set of all infinite decimals.
We denote this set by R.

examples: 2 = 2.000 . . . −3

4
= −0.7500 . . . 1

3
= 0.333 . . .√

2 = 1.4142 . . . π = 3.1415 . . .
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Real numbers and the real line

We can think of the real numbers as the set of all infinite decimals.
We denote this set by R.

examples: 2 = 2.000 . . . −3

4
= −0.7500 . . . 1

3
= 0.333 . . .√

2 = 1.4142 . . . π = 3.1415 . . .

The real numbers can be represented as points on the real line.

-3 -2 -1 0 1 2 3 4-3/4 1/3 π2
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Properties of the real numbers

The real numbers have three types of fundamental properties:

Bill Jackson Calculus I



Properties of the real numbers

The real numbers have three types of fundamental properties:

algebraic: the rules of calculation (addition, subtraction,
multiplication, division).
Example: 2(3 + 5) = 2 · 3 + 2 · 5 = 6 + 10 = 16
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Properties of the real numbers

The real numbers have three types of fundamental properties:

algebraic: the rules of calculation (addition, subtraction,
multiplication, division).
Example: 2(3 + 5) = 2 · 3 + 2 · 5 = 6 + 10 = 16

order: inequalities relating any two real numbers (for a geometric
picture imagine the order in which points occur on the real line).
Example: −3

4
<

1

3
,

√
2 ≤ π
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Properties of the real numbers

The real numbers have three types of fundamental properties:

algebraic: the rules of calculation (addition, subtraction,
multiplication, division).
Example: 2(3 + 5) = 2 · 3 + 2 · 5 = 6 + 10 = 16

order: inequalities relating any two real numbers (for a geometric
picture imagine the order in which points occur on the real line).
Example: −3

4
<

1

3
,

√
2 ≤ π

completeness: “there are no gaps on the real line”
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Algebraic properties - Addition

The first five algebraic properties involve addition:
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Algebraic properties - Addition

The first five algebraic properties involve addition:

(A0) For all a, b ∈ R we have a + b ∈ R. closure
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Algebraic properties - Addition

The first five algebraic properties involve addition:

(A0) For all a, b ∈ R we have a + b ∈ R. closure

(A1) For all a, b, c ∈ R we have a + (b + c) = (a + b) + c .
associativity

Bill Jackson Calculus I



Algebraic properties - Addition

The first five algebraic properties involve addition:

(A0) For all a, b ∈ R we have a + b ∈ R. closure

(A1) For all a, b, c ∈ R we have a + (b + c) = (a + b) + c .
associativity

(A2) For all a, b ∈ R we have a + b = b + a. commutativity
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Algebraic properties - Addition

The first five algebraic properties involve addition:

(A0) For all a, b ∈ R we have a + b ∈ R. closure

(A1) For all a, b, c ∈ R we have a + (b + c) = (a + b) + c .
associativity

(A2) For all a, b ∈ R we have a + b = b + a. commutativity

(A3) There is an element 0 ∈ R such that a + 0 = a for all a ∈ R.
identity
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Algebraic properties - Addition

The first five algebraic properties involve addition:

(A0) For all a, b ∈ R we have a + b ∈ R. closure

(A1) For all a, b, c ∈ R we have a + (b + c) = (a + b) + c .
associativity

(A2) For all a, b ∈ R we have a + b = b + a. commutativity

(A3) There is an element 0 ∈ R such that a + 0 = a for all a ∈ R.
identity

(A4) For all a ∈ R there is an element −a ∈ R such that
a + (−a) = 0. inverse
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Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:
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Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:

(M0) For all a, b ∈ R we have ab ∈ R. closure
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Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:

(M0) For all a, b ∈ R we have ab ∈ R. closure

(M1) For all a, b, c ∈ R we have a(bc) = (ab)c . associativity
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Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:

(M0) For all a, b ∈ R we have ab ∈ R. closure

(M1) For all a, b, c ∈ R we have a(bc) = (ab)c . associativity

(M2) For all a, b ∈ R we have ab = ba. commutativity
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Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:

(M0) For all a, b ∈ R we have ab ∈ R. closure

(M1) For all a, b, c ∈ R we have a(bc) = (ab)c . associativity

(M2) For all a, b ∈ R we have ab = ba. commutativity

(M3) There is an element 1 ∈ R such that a 1 = a for all a ∈ R.
identity
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Algebraic properties - Multiplication

There are five analogous algebraic properties for multiplication:

(M0) For all a, b ∈ R we have ab ∈ R. closure

(M1) For all a, b, c ∈ R we have a(bc) = (ab)c . associativity

(M2) For all a, b ∈ R we have ab = ba. commutativity

(M3) There is an element 1 ∈ R such that a 1 = a for all a ∈ R.
identity

(M4) For all a ∈ R with a 6= 0, there is an element a−1 ∈ R such
that a a−1 = 1. inverse
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Algebraic properties - Distributivity

One last algebraic properties links addition and multiplication:
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Algebraic properties - Distributivity

One last algebraic properties links addition and multiplication:

(D) For all a, b, c ∈ R we have a(b + c) = ab + ac . distributivity
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Algebraic properties - Distributivity

One last algebraic properties links addition and multiplication:

(D) For all a, b, c ∈ R we have a(b + c) = ab + ac . distributivity

Properties A0-A5, M0-M5, and D define an algebraic structure
called a field.
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Order properties

For all a, b, c ∈ R we have:
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Order properties

For all a, b, c ∈ R we have:

(O1) either a ≤ b or b ≤ a totality of ordering I
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Order properties

For all a, b, c ∈ R we have:

(O1) either a ≤ b or b ≤ a totality of ordering I

(O2) if a ≤ b and b ≤ a then a = b totality of ordering II
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Order properties

For all a, b, c ∈ R we have:

(O1) either a ≤ b or b ≤ a totality of ordering I

(O2) if a ≤ b and b ≤ a then a = b totality of ordering II

(O3) if a ≤ b and b ≤ c then a ≤ c transitivity
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Order properties

For all a, b, c ∈ R we have:

(O1) either a ≤ b or b ≤ a totality of ordering I

(O2) if a ≤ b and b ≤ a then a = b totality of ordering II

(O3) if a ≤ b and b ≤ c then a ≤ c transitivity

(O4) if a ≤ b then a + c ≤ b + c order under addition
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Order properties

For all a, b, c ∈ R we have:

(O1) either a ≤ b or b ≤ a totality of ordering I

(O2) if a ≤ b and b ≤ a then a = b totality of ordering II

(O3) if a ≤ b and b ≤ c then a ≤ c transitivity

(O4) if a ≤ b then a + c ≤ b + c order under addition

(O5) if a ≤ b and 0 ≤ c then a c ≤ b c order under multiplication
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Other rules for working with inequalities

The order properties O1-O5 have many consequences:
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Other rules for working with inequalities

The order properties O1-O5 have many consequences:
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Other rules for working with inequalities

The order properties O1-O5 have many consequences:

We can prove that these rules are valid by using properties O1-O5.
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The completeness property

Intuitively this means “there are no gaps in the real numbers”.
More precisely it says:
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The completeness property

Intuitively this means “there are no gaps in the real numbers”.
More precisely it says:

If a set of real numbers S has an upper bound i.e. there exists a
number c ∈ R such that x ≤ c for all x ∈ S , then S has a least

upper bound i.e. there exists an upper bound c0 for S such that
c ≥ c0 for all upper bounds c of S .
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Intervals

Definition An interval is a subset I of R of one of the following
two types:
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Intervals

Definition An interval is a subset I of R of one of the following
two types:

(a) all real numbers which lie between two given real numbers;
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Intervals

Definition An interval is a subset I of R of one of the following
two types:

(a) all real numbers which lie between two given real numbers;

(b) all real numbers which are either above or below a given real
number.
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Intervals

Definition An interval is a subset I of R of one of the following
two types:

(a) all real numbers which lie between two given real numbers;

(b) all real numbers which are either above or below a given real
number.

Type (a) intervals are said to be bounded (or finite). Type (b)
intervals are said to be unbounded (or infinite).
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Intervals

Definition An interval is a subset I of R of one of the following
two types:

(a) all real numbers which lie between two given real numbers;

(b) all real numbers which are either above or below a given real
number.

Type (a) intervals are said to be bounded (or finite). Type (b)
intervals are said to be unbounded (or infinite).

The completeness property tells us that an interval which is
bounded above has a least upper bound. Similarly an interval
which is bounded below has a greatest lower bound. We refer to
these values as end-points of the interval.
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Examples

I = {x ∈ R : 3 < x ≤ 6} defines a bounded interval.
Geometrically, it corresponds to a line segment on the real
line. It has two end-points 3 and 6. We can describe it using
the notation I = (3, 6], where the round bracket on the left
tells us that 3 6∈ I and the square bracket on the right tells us
that 6 ∈ I .
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Examples

I = {x ∈ R : 3 < x ≤ 6} defines a bounded interval.
Geometrically, it corresponds to a line segment on the real
line. It has two end-points 3 and 6. We can describe it using
the notation I = (3, 6], where the round bracket on the left
tells us that 3 6∈ I and the square bracket on the right tells us
that 6 ∈ I .

I = {x ∈ R : x > −2} defines an unbounded interval.
Geometrically, it corresponds to a ray i.e. a line which extends
to infinity in one direction. It has one end-point −2. We can
describe it using the notation I = (−2,∞).
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Open and Closed intervals

We can distinguish between intervals which are bounded or
unbounded. We can also distinguish between intervals by
considering whether or not they contain their end points: intervals
which contain all their end-points are closed; intervals which
contain none of their end-points are open; intervals which have two
end points and contain exactly one of them are half-open (or
half-closed).
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Types of intervals
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Solving inequalities

We can represent the set of all solutions to one or more inequalities
as an interval or, more generally, as a collection of disjoint intervals.

Examples: Find the set of all solutions to the following
inequalities.
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Solving inequalities

We can represent the set of all solutions to one or more inequalities
as an interval or, more generally, as a collection of disjoint intervals.

Examples: Find the set of all solutions to the following
inequalities.

2x − 1 < x + 3. Using the properties of order we have
2x < x + 4 and hence x < 4. Thus the set of solutions is the
interval (−∞, 4).
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Solving inequalities

We can represent the set of all solutions to one or more inequalities
as an interval or, more generally, as a collection of disjoint intervals.

Examples: Find the set of all solutions to the following
inequalities.

2x − 1 < x + 3. Using the properties of order we have
2x < x + 4 and hence x < 4. Thus the set of solutions is the
interval (−∞, 4).
6

x−1
≥ 5. Since 6

x−1
> 0 we have x − 1 > 0 and hence x > 1.

We can now use property (O5) to deduce that 6 ≥ 5x − 5 and
hence 11

5
≥ x . Combining these two inequalities we see that

the set of solutions is the interval (1, 11
5
].
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Solving inequalities

We can represent the set of all solutions to one or more inequalities
as an interval or, more generally, as a collection of disjoint intervals.

Examples: Find the set of all solutions to the following
inequalities.

2x − 1 < x + 3. Using the properties of order we have
2x < x + 4 and hence x < 4. Thus the set of solutions is the
interval (−∞, 4).
6

x−1
≥ 5. Since 6

x−1
> 0 we have x − 1 > 0 and hence x > 1.

We can now use property (O5) to deduce that 6 ≥ 5x − 5 and
hence 11

5
≥ x . Combining these two inequalities we see that

the set of solutions is the interval (1, 11
5
].

x2 − 2x − 1 > 2. Then x2 − 2x − 3 > 0 so
(x +1)(x − 3) > 0. Hence either (x +1) and (x − 3) are both
positive i.e. x > 3, or (x + 1) and (x − 3) are both negative
i.e. x < −1. Thus the set of solutions is union of the two
disjoint intervals (−∞,−1) and (3,∞).
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Absolute Value

Definition The absolute value (or modulus) of a real number x is
defined as:

|x | =
{

x if x ≥ 0
−x if x < 0.
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Absolute Value

Definition The absolute value (or modulus) of a real number x is
defined as:

|x | =
{

x if x ≥ 0
−x if x < 0.

Geometrically, |x | is the distance on the real line between x and 0.
example:
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Absolute Value

Definition The absolute value (or modulus) of a real number x is
defined as:

|x | =
{

x if x ≥ 0
−x if x < 0.

Geometrically, |x | is the distance on the real line between x and 0.
example:

Similarly, for any x , y ∈ R, |x − y | is the distance between x and y .
example:
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Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose a, b ∈ R.
Then:

1 |a| =
√
a2;
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Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose a, b ∈ R.
Then:

1 |a| =
√
a2;

2 | − a| = |a|;
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Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose a, b ∈ R.
Then:

1 |a| =
√
a2;

2 | − a| = |a|;
3 |ab| = |a| |b|;
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Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose a, b ∈ R.
Then:

1 |a| =
√
a2;

2 | − a| = |a|;
3 |ab| = |a| |b|;
4 | a

b
| = |a|

|b| when b 6= 0;
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Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose a, b ∈ R.
Then:

1 |a| =
√
a2;

2 | − a| = |a|;
3 |ab| = |a| |b|;
4 | a

b
| = |a|

|b| when b 6= 0;

5 |a + b| ≤ |a|+ |b|. the triangle inequality.
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Properties of Absolute Value

Lemma (Properties of Absolute Value) Suppose a, b ∈ R.
Then:

1 |a| =
√
a2;

2 | − a| = |a|;
3 |ab| = |a| |b|;
4 | a

b
| = |a|

|b| when b 6= 0;

5 |a + b| ≤ |a|+ |b|. the triangle inequality.

Proof of (1). By definition, the symbol
√
a2 is always taken to be

the non-negative square root of a2. So
√
a2 = a if a ≥ 0 and√

a2 = −a if a < 0. Hence |a| =
√
a2.

We can use (1) to prove (2)-(5).
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Absolute Value and Intervals

We can express the set of all solutions to inequalities involving
absolute values as unions of one or more disjoint intervals.
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Absolute Value and Intervals

We can express the set of all solutions to inequalities involving
absolute values as unions of one or more disjoint intervals.
Lemma (Absolute values and Intervals) Suppose a is a positive
real number. Then:

1 |x | = a ⇔ x = ±a;

2 |x | < a ⇔ −a < x < a ⇔ x ∈ (−a, a);

3 |x | > a ⇔ x < −a or x > a ⇔ x ∈ (−∞,−a) ∪ (a,∞);

4 |x | ≤ a ⇔ −a ≤ x ≤ a ⇔ x ∈ [−a, a];

5 |x | ≥ a ⇔ x ≤ −a or x ≥ a ⇔ x ∈ (−∞,−a] ∪ [a,∞);
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Absolute Value and Intervals

We can express the set of all solutions to inequalities involving
absolute values as unions of one or more disjoint intervals.
Lemma (Absolute values and Intervals) Suppose a is a positive
real number. Then:

1 |x | = a ⇔ x = ±a;

2 |x | < a ⇔ −a < x < a ⇔ x ∈ (−a, a);

3 |x | > a ⇔ x < −a or x > a ⇔ x ∈ (−∞,−a) ∪ (a,∞);

4 |x | ≤ a ⇔ −a ≤ x ≤ a ⇔ x ∈ [−a, a];

5 |x | ≥ a ⇔ x ≤ −a or x ≥ a ⇔ x ∈ (−∞,−a] ∪ [a,∞);

Proof of (4). This follows because the distance from x to 0 is less
than or equal to a if and only if x lies between a and −a.
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Examples

(a) |2x − 3| ≤ 1 if and only if x ∈ [1, 2].
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Examples

(a) |2x − 3| ≤ 1 if and only if x ∈ [1, 2].

(b) |2x − 3| ≥ 1 if and only if x ∈ (−∞, 1] or x ∈ [2,∞).
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Examples

(a) |2x − 3| ≤ 1 if and only if x ∈ [1, 2].

(b) |2x − 3| ≥ 1 if and only if x ∈ (−∞, 1] or x ∈ [2,∞).

Reading Assignment:
Thomas’ Calculus, Appendix 3:
Lines, Circles, and Parabolas
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