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Question 1 (a) If z = x + iy is a complex number, find an expression for |z − 1|
in terms of x and y, and hence sketch the region in the Argand diagram for
which |z − 1| ≤ 2. [7]

(b) If z1 = 3(cos 5θ+i sin 5θ) and z2 = 2(cos 3θ+i sin 3θ) are two complex numbers,
use de Moivre’s theorem to simplify z2

1/z3
2 . [7]

(c) Find the sum of the series
∞∑

n=0

(−1)n

4n
.

[7]

(d) Find the first four terms (i.e. up to and including terms of order x9) of the
binomial series of (1 + x3)−1/2. [7]

(e) Use the ratio test to find the radius and interval of convergence for the power
series ∞∑

n=1

xn

n
√

n 2n

being careful to specify the behaviour at the end points of the interval. [7]

(f) Find all first-order and second-order partial derivatives of the function f(x, y) =
ey cos x− ex sin y + 4x2y3 − 3 ln x. [7]

(g) Find the equation of the tangent plane and the equation of the normal line at
the point P = (2, 0, 2) on the surface consisting of those points (x, y, z) such
that 2z − x2 = 0. [7]

(h) Find the Jacobian ∂(x, y)/∂(u, v) for the transformation x = u cos v, y =
u sin v. [7]
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Question 2 (a) Use the comparison test to determine whether the following series
converge or diverge: (i)

∑∞
n=4(2/(n− 3)), (ii)

∑∞
n=1(3/(n + 1)2). [6]

(b) An alternating series is given by
∑∞

n=0(−1)n+1un. What conditions on un are
sufficient for this series to converge? Hence determine whether the following
series converges absolutely, converges conditionally or diverges:

∞∑
n=1

(−1)n+1 n

n3 + 2
.

[5]

Question 3 Use the method of Lagrange multipliers to find the maximum value of
the function f(x, y) = 36− x2 − y2 on the line x + 3y = 10. [11]

Question 4 Find all the local maxima, local minima and saddle points of the func-
tion

f(x, y) = 9x3 + y3/3− 4xy .

[11]

Question 5 Solve the system u = 2x + y, v = x− y to find expressions for x and y
in terms of u and v. Use your solution to find the Jacobian ∂(x, y)/∂(u, v). Hence
evaluate the integral ∫ ∫

R
(2x2 − xy − y2) dx dy

for the region R bounded by the lines y = −2x + 1, y = −2x + 3, y = x, y = x− 1. [11]

End of Paper
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