

B.Sc. EXAMINATION BY COURSE UNITS

MAS115 Calculus I (first sit paper)

Friday 04 May 2007, 14:30 - 16:30

The duration of this examination is 2 hours.

You should attempt all questions. Marks awarded are shown next to the questions. Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Candidates must not remove the question paper from the examination room.

YOU ARE NOT PERMITTED TO START READING THIS QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY AN INVIGILATOR

© Queen Mary, University of London, 2007

- 1. Marks are only awarded for the final answer, so indicate this answer clearly.
 - (a) [5 marks] Evaluate in terms of radicals

$$\cos\frac{\pi}{12} \ .$$

(b) [5 marks] Find the limit

$$\lim_{x \to 2} \frac{\sqrt{x^2 + 12} - 4}{x - 2}$$

(c) [5 marks] For what value of a is

$$f(x) = \begin{cases} x^2 - 1 , & x < 3\\ 2ax , & x \ge 3 \end{cases}$$

continuous at every x?

(d) [5 marks] Find the limit

$$\lim_{\theta \to 0} \tan\left(1 - \frac{\sin\theta}{\theta}\right) \; .$$

(e) [5 marks] Find the derivative f'(t) of

$$f(t) = 4\sin\sqrt{1+\sqrt{t}} \; .$$

(f) [5 marks] Find the area enclosed by the two curves

$$y = x^2 - 2$$
 and $y = 2$.

(g) [5 marks] Evaluate the integral

$$\int \frac{dx}{\sqrt{x}(\sqrt{x}+1)} \, .$$

(h) [5 marks] Evaluate the integral

$$\int_0^\pi \sqrt{1 - \cos 2x} \, dx \; .$$

(i) [5 marks] Evaluate the integral

$$\int_1^e x^3 \ln x \, dx \; .$$

(j) [5 marks] Evaluate the integral

$$\int \frac{dx}{x^2 + 2x} \, .$$

2

[Next question overleaf]

2. [20 marks] Consider the curve y = f(x) for the function

$$f(x) = \frac{12}{3+x^2}$$

- (a) Identify the domain of f and any symmetries the curve may have.
- (b) Find f'(x) and f''(x).
- (c) Find the critical points of f, and identify the function's behaviour at each one.
- (d) Find where the curve is increasing and where it is decreasing.
- (e) Find the points of inflection, if any occur, and determine the concavity of the curve.
- (f) Identify any asymptotes.
- (g) Plot key points, such as intercepts, critical points, and points of inflection, and sketch the curve.
- (h) Is the area enclosed by the curve and the x-axis finite? If so, what is its value?
- **3.** [10 marks] Consider the curve given by

$$x^2 + 7xy + y^2 = 9 .$$

- (a) Find y' by implicit differentiation.
- (b) Are there any straight lines through the origin that are normal to this curve? If so, find the points of orthogonal intersection and the equation for each line.
- **4.** [10 marks]
 - (a) What are the hypotheses and conclusions of the Mean Value Theorem?
 - (b) Using the Mean Value Theorem, deduce the following statement: If f'(x) = 0 at each point x of an open interval (a, b), then f(x) = C for all $x \in (a, b)$, where C is a constant.
- **5.** [10 marks]
 - (a) State the definition of the derivative of the function f(x) with respect to the variable x.
 - (b) Given

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \text{ and } \lim_{x \to 0} \frac{\sin x}{x} = 1 ,$$

differentiate from first principles $f(x) = \cos x$.

[End of examination paper]