Chapter 4

Vector integrals and integral theorems

Last revised: 1 Nov 2010.

Syllabus covered:
1. Line, surface and volume integrals.
2. Vector and scalar forms of Divergence and Stokes’s tlegr€onservative fields: equivalence to curl-free
and existence of scalar potential. Green’s theorem in thagl

Calculus | and Il covered integrals in one, two and three disienal Euclidean (flat) space (i, R?
andR?). We are still working inR® so there is no generalization to be applied to volume ordriplegrals,
but we will generalise one dimensional integration fromraight line to an integral along a curve, and we
will generalise two-dimensional integration from a regiora plane to a curved surface.

We will also be working with integration of vectors, though finany cases we will be using a scalar
product so the final quantity to be integrated becomes arsd¢althe cases with a scalar product:

J f(x) dx generalizes td,, F - dr on a curves, called dine integral (section 4.1).
J [ f(x y)dxdy generalizestd', F-dSover a surface”, called asurface integral (section 4.2).

We will then have to study the generalizations of

df dx= f(b)— f(a) 4.1)

a dx o ’ )
called the ‘fundamental theorem of calculus’, which we usehie proofs. This theorem relates a one-
dimensional integral to a (pair of) zero-dimensional easibns at the two endpoints= a,b. The higher
dimensional versions do the following:

Stokes’s theorem relates the surface integral of a curl fnaihtegral (2 dimensions to 1) around the
edge of the surface: see section 4.6.

The Divergence Theorehmelates the volume integral of a divergence to a surfacgiat¢3 dimensions
to 2) over the boundary of the volume: see section 4.4.

There is also a special case of Stokes’s theorem where tfaceus a plane: this is Green’s theorem

LFirst discovered by Joseph Louis Lagrange in 1762, therpiexigently rediscovered by Carl Friedrich Gauss in 1813, bgrGe
Green in 1825 and in 1831 by Mikhail Vasilievich Ostrograglskho also gave the first proof of the theorem. Thus the resalj be
called Gauss’s Theorem, Green’s theorem, or Ostrograsiskgorem.
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relating the integral of a curl to a line integral (2 dimemsdo 1): see section 4.5.

[Aside: All these are in fact special cases of the generdte3ts theorem which relates an- 1 dimen-
sional integral of a field to the dimensional integral of its derivative. Here the field is agelization of a
vector field called arfin — 1)-form field.]

Finally we will discuss the application to potentials, ahd proofs.
Before moving on to line and surface integrals, we consigectase where one wants to integrate a vector

functionF(u) of one variabley, with respect tau. The integral can be calculated simply by integrating the
components (in Cartesian coordinatesfef (Fi, F, F3):

/F du (/Fl du, /ngu, /ngu> 4.2)

i/Fldu+j/F2du+k/F3du (4.3)

Integration of a vector in this case is just a set of threeradi integrals. The restriction to Cartesian
coordinates can be overcome by looking at the definition atorgal terms: we go back to the basic definition
of integration, which leads to a geometrical picturezoE f(.f Fdu (see Fig. 4.1):

G= qu— lim ZF )oup .

a upHO

F(u+ duy +---)oun

b
GE/F

lim Z F(u)du,

N—>oo 6up—>0

F(u + duq)dusg
F(u)duy

Figure 4.1: Geometrical picture & = f,f Fdu= lims,, .o Z'B':l F(u)dup .

Example 4.1. If v(t) = dr/dt is the velocity of a particle, as a function of tiiegthen

12 t2 dr r(tz2)
/ vat = —dt:/ dr =r(t2) —r(t)
t t dt r(ta)

Note here that is the vector velocity of the particle, so the time-integsahe vector distance between the
two end-points. If we had pwinstead ofv in the integral, then the result would be a scalar equal tadtze
arc-length of the curved pattft), as we met in Chapter 2.

Warning: there seems to be a common belief that an integral alwaygsepts an area or volume.
This comes from 1-D integration wheffef (x) dx can be shown as an area between a cyevef (x) and the
x—axis; or in 2-D integration the resufth(x,y) dxdycan be expressed as a volume betweerxshglane
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and the surface = h(x,y). However, when we take general line and surface integragdbults are not
necessarily areas and volumes; we will see that these aitegan represent various things such as distance
travelled, work done by a force, flow of a fluid crossing a scefaetc, but there is not always a simple
geometrical picture for the result of an integral.

4.1 Line Integrals

(See Thomas 16.1 and 16.2: note that Thomas begins by deéirsoglar integral f|dr|, in the notation
below. | come back to this at the end of this section.)

Suppose- = (F1, F, Fs) is a vector field defined in some region of space, & a parametrized curve
through that region fromy to r, so that? is given by

rt) =(9(t), h(t),q(t)) (L <t<ty),

andrq =r(t1), ra =r(t2). Then, one can define the line integral

r2
F-dr

ri

to be

T dr T dg dh dg
F(r(t))-=—dt = F—+F— — ) dt 4.4
Creay-go = [(RE g Ry ) (@.4)
Warning: do not forget to write the components Bfin terms of the parametdr so thatt is the only
variable that appears inside the integral!. Hence you mugt w(r) = F(r(t)), so we replac&i (X, y, z) by

F1(g(t), h(t), q(t)), and so on; then we evaluate the dot produck @nddr /dt, before finally integrating
overt to get the numerical answer.

Second warning: it seems to be easy to confuse where one has ta @g@nd where one uses (tt; you
have to evaluatE at positionr (t), while the line-segmerdr is given by(dr /dt) dt.

The above is just a version of the fundamental definition ofraegral as the limit of lots of small
contributions. In this case it's the scalar product§ @f) with small displacemenidr along%”:

ro N
F.dr = lim F(r)-or
~/r1 6rp—>0le ( ) P

If we are given a geometrical description of the curve with@yparametrization, we have to fifitd a
parametrisation of the described curve to actually evaluate the integrallires, circles, ellipses and so we
can use, for example, (1.33) and (1.18)—(1.20).

Example 4.2. Evaluate the integrgl F - dr for the vector field= = —4xyi + 8yj + 2k, from the origin to
the point(2, 4, 1) along the following three paths:

1. along the curve =ti+t% + 3tk, 0<t < 2,

2. from the origin to(2, 0, 0), then from there td2, 4, 0), then to(2, 4, 1), along straight lines [Note that
the answer will be the sum of the three parts: a path may haxeraeieces, providing the next one
begins where the previous one ends.]

3. on the surfacex + y? = 32z along a line with constarny/x.
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Note that only for the first of these do we have the paramdiozaiven: in the second and third we'll have
to make a parametrization from the definitions.

. . . o[ .
1. In this case we are given the parametrised cuft)eas above, and from that we g&t =i+2+ %k,

andF(r(t)) = —4(t)(t?)i + 8(t?)j + 2k. The final bits we need is the- values at the given endpoints
rp =(0,0,0) andr, = (2,4,1); itis easy to see those are- 0 andt = 2 (solve the easiest equation e.qg.
x=t, and plug that in to the other two to check). Putting thinggetber, we have

r2 2 dr
/ F.dr F(r(t). 2 ot
ry t=0 dt

2
/0 (—4t% + 813 + 2K).(i + 2t + 3K) ot

[+ @@+ @3)]

2
/(1Z3+1)dt
0
— [3*+1t]2=48+2=50

2. Now our given “curve” is three straight line segments garend-to-end and we need parametrisations
for each, separately.
The first segment is front0, 0, 0) to (2, 0, 0). The straight line is, from the general form of Eq. 1.33
for the case of a line joining; andry, i.e.r =r1+t(ro—rq),

r=0+t(2), 0<t<1
Here we could call 2simply x, so
r=xi, 0<x<2

Along this line we have d=idx. To get the value oF we substitutey = z= 0 into the general form
for F, giving F = 2k. Taking the scalar produdg,- dr = 0 and hence this segment gives a zero integral.

In the second segment, frof8, O, 0) to (2, 4, 0), we similarly get

so along it, d = jdy. Substitutingx =2, z= 0 in F we haveF = —8yi + 8yj + 2k. SoF-dr = 8ydy
and hence this gives

4
| eyay= (4215~ 64
In the last segment, frort®, 4, 0) to (2, 4, 1),
r=2+4j+z«, 0<z<1
so along it we haverd= kdz, andx = 2,y = 4 givesF = —32i + 32 + 2k, soF -dr = 2dz and hence
this gives/y 2 dz= 2.
Finally adding the integrals from the three segments tagyetlve get the full line integral over our

given path=0+64+2=66.

3. Now we are integrating along a line in a curved surfacegtpeation for the line is not given explicitly,
but we are told two things which let us solve for it: the lindrighe surface # +y? = 32z, and our
line has constant/x soy = kx for some constark. Geometrically, our line will be the intersection of
a planey = kx (containing thez—axis) with the above surface. Since at the second end gpeirt and
y = 4, we needk = 2 soy = 2x. Substituting that in ¥ 4 y? = 32z gives & = 32z sox = 2,/z, and
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y =4,/z Now we have botlx andy in terms ofz, so we can useas the one parameter for our curve:
we have
r=27+4/7 +z 0<z<1 ,

where the limits orez follow from the given endpoints. Once we have a one-paramegression
for the curver (2), it is straightforward: we getrd= (i//z+2j /\/z+k)dz, while F(r(z)) = —32z +
32,/7 + 2k. Hence inserting those into Eq. 4.4, remembering to takedhtar product, we have

1 1
/()(—32\/2+64+2)dz:/0 (66— 32,/2) dz:[662—64z3/2/3]é=66—6—34 ,

which we could also write as 44

Note: in the above, we could alternatively have chosess the one parameter, and write= 2x,
z=x?/4 to getr = xi + 2xj + (xX*/4)k, and range & x < 2. It is straightforward to check that this
gives the same result §4or the line integral.

As well as giving some examples of how to calculate line irdbkg this example makes the important
point that in general the result depends on the curve, nbjusts two endpoints. We shall return to this
matter in Section 4.7, where we will find thatkfhas zero curl (irrotational), the resulting line integraly
depends on the two endpoints, not the curve between them.

Exercise 4.1. Calculate|- F - dr, whereF = 4yz — 37 + 2x%k, over each of the following curves from
(0,0,0)to (1,1,1):

@C: r=ti+tj+tk 0<t<1
(b)C: r=t%i+tj+t%k 0<t<1

If the vector fieldF represents &orce (e.g. gravitational force), then

r2
/ F.dr
ri

is called awork integral and its value is thevork done by the force for a particle moving betweenandr,
which equals the increase in energy of the body acted on. dduigrs because for each small movenamt
(small enough to be a straight line),dfis the local angle betwedhanddr, thenF cosf is the component
of forceparalleltodr, soF-dr = F dr cos is the work done by the force, along the small stepThe line
integral just adds up that work along all the small steps@lbie path, so the line integral is the total work
done fromr; toro.

If instead of representing a forcE,represents the velocity field in a fluid, anddfis some curve in the
fluid, then [, F - dr is called theflow along curves'. If ¢ is a closed curve, the flow is called tbieculation
arounds’.

Finally, note that Thomas's fornfi f|dr| is obtained if one assumes tHais parallel to the unit tangent

dr  |dr . . dr o .
vector to the curve, = E/ ‘ rrak at all points on the curve, sme(%dt =t|dr|, and in this case, taking= ft,

dr
F.— dt = ft-t|dr| = f|d
& jdr| = fld|

Thus Thomas’s starting point is simply a special case of greegal line integral.

45



4.2 Surface integrals

(See Thomas 16.5 and 16.6, but be aware that Thomas startfibing the integral of a scalar, using what
is, in the notation belowj f|dS|. )

To define surface integrals, we now have to take into accdwaita small area on a curved surface has
both a magnitude and a direction (the normal to the surfas®)@ated with it, so we can represent a small
area as a vector, as we saw in Chapter 2.

Consider an are&in a plane (see Fig. 4.2a). ifis a unit vector perpendicular to the plane, then the
vector representing the are,is defined to be

S=5

Figure 4.2: (a) Normath to a plane are&. The vector area iS= Sn. (b) Normaln to a more general surface.
The vector area of the small surface elemer3s= dSn, wheredSis the magnitude of the area.

In the case of a curved surface in three dimensions (see,Av2)eed to pick a small arés which is
small enough to be approximated as (almost) flat, and defenegbtordS for that area elemeriSas
0S=9Sn ,

wheren is a unit vector normal to the surface elemé&t Note we are still using the convention that vectors
are written in bold type and the same symbol in ordinary tymans the magnitude, th@S= |3S|. In the
limit we shall write dSrather thamS. (Thomas usesalfor this dS.)

Note we still have a sign ambiguity in this definition, beaegher direction of the unit vector along the
normal line could be used. One case where we can fix the sidreisdse of &losedsurface, whera is
generally taken to be theutward-pointing unit normal vector. If the surface is not closed, we will héve
explicitly specify geometrically one of the two possibleeditions fom.

Now that we have defined how to represent a small area as arveaaan now define theurface
integral for a vector field= over a general curved surfacé:

/yF-ds - /yF-ndS . (4.5)

Such an integral is also called tfiex of F across area”. Since the quantity integrated is a scalar product
of two vectors, the answer is a scalar quantity.
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These surface integrals arise in a number of physical gitosit one example is the case whéreep-
resents the velocity field in a fluid, where the surface irakgepresents the volume of fluid crossing the
surface.” per unit time. Another example is i is a magnetic field, in which case the integral would be
themagnetic flwacross the surface’. (These results occur becalseoso is the component df parallel to
the local normah i.e. perpendicular to the surface; while the componefi pérallel to the surface (perpen-
dicular ton) does not contribute to the flux across the surface. Thud]ukef F crossing any small patch
of surfacedS s |F|cos6dS which isF - dS from the definition of the dot product. The integration thestj
adds up the contribution from all the infinitesimal patchiegyet the flux crossing the whole curved surface.

The double integrals in a plane that we met befgref (x,y) dxdy, can be thought of as integrals®ds,
where
F = fk and d&5= (dxdy)k

The tricky part is, once we are given a fidfdand a surface”, to turn the general fornf, F.dSinto a
double integral that we can actually do. We shall give sommeg rules after studying some examples.

We next look at three examples of increasing difficulty: amea simple plane case, the second a curved
surface where the integral is easy, and the third gives updtierns we need for the general case.

Example 4.3. If F = (3x, 2xz 3), evaluate the flux of across the surface’: z=0,0<x<1, 0<y<2
(where the normal is to be in the positizeélirection).

Here the given surface is a rectangle in #yeplane, so the normai is +k. We are told to take the plus
sign. We need to integrate oveandy with limits as above:

/FndS // (3% -+ (2X)0] + 3K).(0i + 0] + 1K) dydx_/ / 3dydx—/6dx 6.

Example 4.4. If the velocity field of a fluid isv = r—lzer, wherer is the distance from the origi® andey
is a unit vector at position pointing away from the origin, find the flukv-ndSacross a spher¢’ of radius
awhose centre is at the origin. (The outward normal shouldkert.)

In this case, the outward normal agdare the same vector, so

1 1
V.n:r_zer.er:r_z

(er.er = 1 because is a unit vector). On the given sphere of radajs = a, so

/ v.ndS= / — dS_ — X (Area of sphere of radiug) = ) 47ra2 =4n

using the fact tha{al—2 is a constant, so can be taken outside the integral sign.

Example 4.5. Find the flux of the field= = zk across the portion of the sphere+y2 + 2 = a2 in the
first octant (this is the A8-th of space in whicly, y andz are all> 0) with normal taken in the direction away
from the origin.

This example is easier in spherical polars (see later), lsutan do it in Cartesians. Write the required
part of the sphere as a surface /a2 — x2 — y2 (note that for a whole sphere we would also need the points

wherez = —y/a2 — x2 —y?, the square root being understood to be the non-negative dbensider the
displacement vector for a small change by taking the derivative af = (x, y, v/a2 —x2 —y2) as in section
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3.1. It will be

or ox oy 0z —X
(3_xdx_ (0_x’d_x’d_x) dx = <1, 0, 7%?‘2_)(2_)/2) dx (4.6)
and similarly a small change ingives a displacement

or . -y
Edy—(O,l, a2—x2—y2>dy' (4.7)

The magnitude of the corresponding area element is them diyehe area of a parallellogram with sides
(4.6) and (4.7), and the normal direction is perpendicddhem both, so we need their cross-product

1,0, —X  Jaxx {01, —Y  )dy
2 2 _y2 2 _x2_y2

X _ y .
I+ +k | dxd
<\/a2—x2—y2 \/az_xz_yzj ) y
ThusF - dS = zdxdy = /a2 — x2 — y2dxdy.

Now we need the limits on the variables. The first octant ofsihieere lies above the first quadrant of the
circlex? +y? = a2, z= 0, so we will have

a pyva2-x2
/ / Vaz—x2 —y2dydx.
x=0Jy=

0

das

The rest of the problem is just a double integral like thos€dhculus Il. We can do it by a substitution such
asy = va? — xZsiné which gives

/O @) / "2 02 & dE dx

£=0

and this turns out to bea®/6 using the double-angle formula.

Note that parametrization by a pair of coordinates will nltays give all the surface: for example,
consider the surface consisting of two touching perpendiaguares, one square with a vertex at the origin
and sides 1 along theandy axes, and the similar square in the z) plane: this surface cannot be covered
by any pair of the Cartesian coordinates, though it canyehsikplit into two pieces each of which separately
can be handled that way, and the results added.

The final part of the above example provides general methmdsifning a surface integral like Eq. 4.5
into a double integral we can actually do. We next look at &sas

1. Surface given by two parameteis, v).
2. Surface given by = h(x,y)

3. Surface given byg(x,y,z) =const.

Note that if we are only given a geometrical “description”tbé surface, we will need to put our surface
into one of the above forms before we proceed: which is eisiag depend on the surface, but usually the
two-parameter case is simplest.
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4.2.1 Surface integral: surface given by two parameters

First consider the case whetiee surface is given, or can be found, in terms of two pararseteeveral
examples were covered in Chapter 2. See also Thomas 16.@liagréms 16.55 and 16.56. For a surface
given by two parameters v we have:

r(u,v) =x(u, v)i+y(u, v)j +z(u, v)k .

Now we can do the surface integral as follows:

1. Calculate the partial derivativegsa and%.

or or
dS= <%) X (ﬁ_\/> dudv
As we showed previously, this vector is normal to the surfate has magnitude equal to the area of

the small parallelogram with four corners givenitiy, v), r (u+du,v), r (u,v+dv), r (u+du,v+dv),
so it is thedS we want.

2. Calculate the cross product

3. Express- in terms ofu, v usingr = r(u,v) as given above and substituting.
4. Form the scalar produ€t- dS

5. From the given geometry of the surface, work out approgfianits onu,v and perform the double
integral overdu anddv.

This gives us finally

/yF'dSZ/\,/uF(r(u’v))' (% X %) dudv

Warning: note that the cross-product above may be opposite to théreglquormal direction, so one may
need to take its negative (which is equivalent to just swaghie order in the cross-product).
Both for this reason, and for working out limits on the vated) it is a good idea to draw a sketch first.

For the standard surfaces such as cylinders, spheres @§bils we already know some parametriza-
tions, (1.28)—(1.31).

4.2.2 Surface integral: surfacez = h(x,y)

The second case to consider is where we have a surface givareaordinate is a function of the other
two, e.g.z= h(x,y). This is essentially a special case of the more general twarpeter case above where
x=u, y=V, z=h(u,v). Just using andy as the parameters, we get the surface as(x,y, h(x,y)), and
partial differentiation gives

or or

ox = (Loaax) o

- (0.1,0h/3y)

so the area element on the curved surfaeeh(x,y) is again the cross product of the above, which is

dS= (—oh/dx, —dh/ay, 1) dxdy

Next we evaluat&(r) on the surface using= (x,y,h(x,y)) again, we evaluate the scalar prodietsS,
and finally do the double integral with respecixg.
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(There are other similar cases if insteas given as a function of,z by x = g(y, 2) ; this is very similar
to the above except for swappinrgy, 2) .

Aside: Itis also useful to note that the unit normal to the surfaeeh(x,y) is

1
" \/(dh/dx)2+(dh/dy)2+1(_‘9h/¢7x, —dh/dy, 1)

Sincen is a unit vector, the angl@ this makes with the axis is given by

cos8 = k.n = 1/1/(dh/0x)2 + (9h/dy)2 + 1

The magnitude 8= |dS] is then
dS= /(9h/dx)2+ (dh/dy)2 + 1 dxdy = dxdy/ cosh.

This is not needed for the surface integral in the curreng chst we will make use of this result in the
next section .

4.2.3 Surface given byg(x,y,z) = constant

The third case of a surface integral is that where we are giveactor fieldF, and where our surface is
defined by a functiog(x,y,z) = const, (and some specified boundaries), when we do not rzeitg$ave a
convenient parametrization. As long as the surface is singlued in two coordinates, e.g. for a givery
there is a unique on the surface, we can use those two coordinatexgy@s the two parameters as follows:

Calculatdlg (which is the vector normal to the surface).
Find the unit normal vector in that direction= COg/|dg|.

Calculate co8 = n -k, where@ is the angle betweemand the+z-direction.

P 0 NP

Write dS = ndS = ndxdy/ cos, using the result from the previous subsection. (For a gédcaé

illustration, consider a ’light bulb’ at = +. A small patch on our surface with ard&would cast

a 'shadow’ of areal Scosf on thexy plane; reversing this, the required a&on the surface which
casts a shadow of areix dywill be dS= dxdy/ cos8).

Combining the above expressions foand co® gets us & = (0g)dxdy/(Cg-Kk) .

5. Finally, use this to fornf.dS, and do the double integration with respecktandy.

Thus, we can usg, y) as our two parameters, provided ébg 0 over our range of, y, and also provided
that we can expreds(r) on the surface in terms ofandy. Here we may need to solve fain terms ofx,y
on our given surface; or if we are lucky, things may simplifytkat at giverx, y andg(x,y,z) we can evaluate
F.dSwithout actually needing to solve far

Note that Thomas gives an even more general version of thesevhe considers a plane with normal
p and an areaAlin the plane (in place ok and ddy): because he is working witfdS he usegcos8|

and writes ¥|cosf| as|Og|/|0g.p|. While one is unlikely to need to use a gengrathat version has the
advantage of covering the three capesi, p =j andp =k in one formula.

/F-ndS
s
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Exercise 4.2.1f F = xi +Yj, evaluate



whereSis the rectangular box formed by the six planes

x=0,a, y=0b, z=0,c.
O

Exercise 4.3.1f F = 3y?i —j + x&, evaluate the integrgl, F.dS, where.” is the surface=1, 0<x<1,
0 <y < x(take the normal pointing in the positizalirection).
[Answer: 1/3] O

L/FﬂdS
S

over the hemispherical surfaSgiven byz > 0, X2+ y? + z° = a2, taking the normal outward from the origin.
[Answer: 1ma?] O

Exercise 4.4.1f F=i+] +k, evaluate

To link up with Thomas, his initiaJ f|dS| is just | F.dSfor a vector field such thdt = fn on the surface.

4.3 Volume Integrals

In Cartesian coordinates, consider a small cuboid with @meer at(x,y,z) and sidegdx dy,dz). This has
the eight corner§xy,z), (x+dxy,2), ..., (x+dx y+dy,z+dz) , and the infinitesimal volume of the cuboid
is obviously & = dxdydz. Since in this course we will not be considering curved thdearensional objects
in four-dimensional space, we do not have to think about toviad version ofdV.

However, the fact thadV is avolumeelement is an important way to look at it. If we re-label ouacp
using new coordinate@l, v, w) , then taking small displacemendsi, dv,dw gives us small displacements
(dr/du)duy, (dr/dv)dy, (dr/dw)dw in ordinaryx,y,z space. These three vectors will form a small paral-
lelepiped, and the volume of that parallelepipBd is given by a scalar triple product of the three vectors
above (see section 1.7); that will give the Jacobian detaniifor change of variables in a triple integral,

d(x,y,2)

9(u,v,w)

as in section 1.3; so this explains why the Jacobian formolksv

dv = dudvdw

Usually the integrand of a volume integral is a scalar. H@vewe could integrate vectors i, though
this is not so often used. Given a vector fi€le= F1i + F»j + F3k, one can define

[ Fav = (valdV)i+(/vF2dv>j+</vF3W)k

For exampleF might be the momentum vector field in a fluid, (in that case waldibaveF = pv where
p is the density an#t is the velocity); the volume integral above would then edhaltotal net momentum of
that volume of fluid.

The most useful integrals we will deal with from here onwaade the line integral, F - dr, the flux
across a surfacd,, F - dS, and the integral of a scalar over a volunfg f dV .

4.4 The Divergence Theorem

(See Thomas 16.8)
The Divergence Theorem states (following Thomas'’s worlihgt “under suitable conditions”:
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Theorem 4.1 The flux of a vector fiel# across a closed oriented surfacé in the direction of the surface’s
outward unit normal vector field equals the integral of] - F over the regior enclosed by the surface

/D-Fd\/:/ F-ndSE/ F.dS (4.8)
9 7 57

If asked to state this theorem, yowst define the terms used, and state the conditions on the sififace
“closed, oriented”) and on the direction of the normal (cah).

We have not spelt out here in detail the ‘suitable conditioeguired of F and the surface. These, and a
proof, are discussed in section 4.9, but will not be examaab

Here the word ‘Oriented’ means we assign an outward diradto the normal to S in a consistent and
continuous way. An S for which this is possible is calleientable the Mdbius strip (see Thomas Fig.
16.46) is an example of a non-orientable surface.

Note that it is not required tha¥’ has a single connected piece. For instance, it could havpawse, one
inside the other, and them would be the volume in between.

The Divergence theorem appears in a number of importantigdilysituations such as Maxwell’s equa-
tions in electromagnetism, and various cases in fluid dyosmFrom a purely mathematical viewpoint,
another use is that to calculate either of the integrals iétcan use the other one if it is easier to do.

In the next example we calculate both sides of the Divergg&hearem for a simple case, and verify they
really are equal.

Example 4.6.Supposef = xy. Find a vector field= such thatd-F = f. SupposeV/ is the closed
rectangular volume bounded by the plaes 0,a, y = 0,b, z= 0,c, and.¥ is the surface of the volume.

Evaluate directly
/fd\/ and /F.ndS
v 7

(wheren is an outward normal), and show that they are equal — as tlmycébe, according to the Divergence
Theorem.

The volume integral is straightforward.

c rb ra c rb c rb
///xydxdydz //[%xzy]gdydz:// 1a%y dydz
0 Jo Jo o Jo 0 Jo

C C
/o [2a%y?)8 dz= /O 1ab? dz= a?h?(Z§ = 1ab’c.

There are numerous ways to construct a vector fietaf the required form, e.g. by integratingwith
respect toc and making this th&component of a vectdt, so

F=(x%/2,0,0) .

Our closed surface” enclosingV is a cuboid with six faces, so we must evaluate on each of the six and
add the results. Since our cuboid is aligned withxhgz axes, on two of the faces,= +i, on twon = +£j
and on the last twa = +k.

Becausd- Ui is always parallel to the-direction,F.n = 0 on the four faces where= +j, +k, so those

give zero surface integral. The remaining faces are the thverex = 0 andx = a:
On thex = 0 face,F = 0 and soF.n = 0. This leaves only the face= a. On that facer.n = (a?y/2)i.i =
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a’y/2, and we have S= dydz Integrating this over that face with respectta gives

b req 1 1 1
_ L2 _ (=32 Ih2 ) e — T4212
/yF.n_/o /O 2aydzdy <2a) <2b)c 4abc,

which agrees with the volume integral @f F above.

Example 4.7. A more typical example of the use of the Divergence Theoretihddollowing. Find the
integral [gA.dSfor A = (x, z, 0) and the surfac8 of a sphere of radiua.

Using the divergence theorem, the surface integral is eigutile volume integral,, O - AdV over the
volumeV interior to the sphere. Bull- A = 1, so the volume integral if1 av over the sphere, which is the
volume of the sphere 41ma/3.

Doing the surface integrgkA - dSdirectly is possible, but much more long-winded.

Example 4.8. Another good example is that from Example 4.5, where we etatlia rather fiddly
surface integral over 1/8th of a sphere. In that case, we gigen F = Zk; sod- F = 1; and the Divergence
theorem tells us that a volume integrallofF is equal to the surface integral Bf dS over thewholesurface
bounding the volume. We may choose our volume as the intefitire 1/8 sphere, bounded by three planes
x=0,y=0,z=0 and the 1/8 sphere +y? + 72 = a? with x,y,z > 0, then the volume integral af - F is
just(1/8) (Volume of full sphere)= mma%/6.

The surface integral is the sum of four parts: one part overli#8 surface of the sphere which we did
before, plus three surface integrals over flat quartetesrin each of thexy, xzandyz planes: those have
outwardunit normal vectors-k, —j, —i respectively since our volume is on the positive side of gdahe.
But F = Zk, so for the second and third of those planes the dot prddwi& is zero; and for the first plane,
we are az= 0 soF = 0. Therefore, all three of the flat quarter-circles give udase integrals of O ; so the
surface integral oF.dS over the 1/8 sphere is equal to the volume integradlloF, = rra®/6, QED.

Exercise 4.5. State the Divergence Theorem. Evaluate both sides of ther@gnce Theorem for the
vector fieldF = xy?zk over a volume@/ which is the interior of the unit cube, i.e. the cube whos¢ives are
at(0,0,0), (1,0,0), (0,1,0), (0,0,1),(0,1,1), (1,0,1), (1,1,0) and(1, 1, 1). O

The Divergence Theorem equates two scalar values. Howewrercan derive from it vector identities.
For example, we can obtain what is called the vector form etkieorem:

/u dS:/DUdV : 4.9)
whereU is a scalar field, and both sides of the above equation arergect

This is proved as follows: given the scalar fiéld we choose any constant vectoand define a new
vector fieldF = U a; next we apply the usual divergence theorenktand the product rule Eq. 3.6 gives us
0-(Ua)=0+a-(0OU), so

/aU-dS:/a-(DU)d\/

Sincea is a constant vector we can take it outside the integral sigmg finally choosing the casas= |, j
andk in turn, we prove Eq. 4.9.
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4.5 Green’s Theorem (in the plane)

(See Thomas 16.4: we take the statement he gives as Theonmewatded. Note that the right side is a
component of a curl.)

Theorem 4.2 (Green’s Theorem:) I¥ is a simple closed curve in the x-y plane, traversed couluekavise,
and M and N are suitably differentiable functions of x anchgnt

/(de+Ndy // (i—':—a—M) dxdy,

where the area integral is over the regiofi enclosed by the curvé.

Note that if asked to state the theorem you must state theenat®” (“simple closed”) and the direction
in which it is travelled.

Proof: The proof is an application of the Divergence Theorem, siggpa volume of height 1 in the
zdirection aboveZz. (Or, if one proves Stokes'’s theorem first, of that theorefakeF = (N, —M,0): then

///(ﬁN aM)ddde
- [](5- 5o

on integrating ovez from 0 to 1. On the top and bottom of the volum&,id in the+k direction soF.dS= 0.
On the rest of the surface we have

/F.dS: //NdS(—MdS,

where & is the component of§lalong thex-axis. Using d = (dx, dy, 0) along%” and d; = (0, 0, dz) in
thez-direction, &5 = dr¢ x dr; gives 5 = dydz and &5, = —dxdz, so

/F.dS //Ndydz+//M dxdz
S S

/Ndy+/M dx.

C C

where the second line follows because thetegral runs from 0 to 1 and the integrand is independegt of
now we have proved the two sides of the theorem are equal.

/(D-F)dv

(Thomas’s Theorem 3 is the same withreplaced byM andM replaced by—N. This version makes
the right side look like a two-dimensional divergence. Stimes you may see these called Green’s theorem
(first form) and Green’s Theorem (second form) etc. )

Example 4.9. Use Green’s theorem to evaluate

/ (xydy —y* dx)

around the unit square: straight path segments from thenatag(1,0) to (1,1) to (0,1) and back to the
origin.
In this caseM = —y? andN = xy; hence

ON oM

X o'?y yray=3
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Thus the required integral is

/01/013ydydx: /01(3/2) dx = 3/2.

45.1 Area within a curve

From Green’s Theorem, we can get a surprising expressichéoarea inside a closed curv@ bounding a
regionSin a plane is

nA:%frxdr,
c

wheren is the unit normal to the plane. We can assume without loseoérglity that the plane of the curve
is thex, y plane. Them =k andr x dr Ok, so we only need thecomponent of the integral which is

%j{(xdy—ydx).
[
By Green’s theorem in the plane this equals

}/dedy:/ldxdy: Area insideC.
2Js s

This can be useful for example if we are given a curve in patamrm (x,y) = (f(t),g(t)) which
contains a closed loop, and we want the area of the loop: s$ireceurve has a closed loop, then there are
two values ofty,t, where the curve returns to the same point, and (as long asutiie does not cross itself
betweerty,ty), we can evaluate the enclosed area within that loop usimghlove formula as

1/t @/ dx

A = 2 ) X(t)dt_y(t)a dt (4.10)

A neat example of this is the case of the ellipse; acost, y= bsint ; this clearly is a closed loop for
t1 =0, t, = 2, and we obtain the area as

2n
A= %/ (abcogt + absir?t) dt = mab
0

4.6 Stokes’s Theorem

(See Thomas 16.7)

The other major theorem of similar character to the Diveggefheorem is Stokes’s theorem which follows.
(Because both are versions of thalimensional Stokes’s theorem, we can prove Stokes'’s émedrom
Green’s and thence from the Divergence Theorem, which wa degtion 4.9. It can also be proved directly.)
We reword Thomas’s version.

Theorem 4.3 [Stokes’s theorem]: IF is a (suitably differentiable) vector field, ard is a closed path
bounding an oriented surfac#’, then

F.dr:/ (DxF).ndSE/ (0% F).dS, (4.11)
¢ 5 7

where% is travelled counterclockwise with respect to the unit nalrmof .~ (i.e. counterclockwise as seen
from the positiven side of.&).
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Again note that if asked to state the theorem, you must dtatét is closed, that it bounds’, and that the
directions of & and d are related as given above.

Itis easy to show that Green’s theorem is a planar versiohisfrésult.

Note that the result is the same for any surfa€¢evhose boundary i%’, so any two surfaces, . with
the same bounding cuni give the same surface integral. ( We will not give a formalgiraf this, but in a
nutshell it is because
O-(0x F)=0 from Eq. 3.12, then applying the Divergence theorem to tilame enclosed between the
two surfaces). This can simplify integration a lot if the Inoling curve lies in a plane, since we can replace a
surface integral over a curved surface with that over thesfigfiace with the same boundary.

To emphasize the need for differentiability conditions)sider

—Yi+X]
F= .
X2 4 y?

We can easily verify thafl x F = 0 (except on the axis where it diverges). But we can also show that
§ F.dr # 0 if we go around the axis: for example going round a circle of radiasising a parametrization
(acosf, asinf)we would have

/F-dr = fa‘z(—asinei +acosfj).(—asinfi +acosj) do :j{ do = 2m.

This occurs because our closed curve has looped arourr-thes where there is infinite curl; if you do the
Complex Variables module in Semester B, this is very simiaa contour integral around a pole.

Example 4.10. Use the surface integral in Stokes’s theorem to calculaeitculation of the field~
F=x% + 2% + 2k

around the curvé’, where? is the ellipse 4° +y? = 4 in thex-y plane, taken counterclockwise when viewed
fromz> 0.

In Stokes’s Theorem, we can choaagy surface that spans the cur¢é The easiest one in this case is
just the planar surface= 0 contained inside the ellipse (so we can use Green’s theioréat). Thusn will
be purely in the-direction:n = k, and so we only need to calculate theomponent of] x F:
_O0R OF 9(x) ox )

OBk =~y = ox oy 2

Integrating this over the elliptical area is easy: the ands/@ust 2 times the area of the ellipse. The area of
an ellipse isrrab, wherea is one semi-major axis length (in this case 1) &nd the other semi-major axis
length (in this case 2). Hence the answeriis 4

As in the case of the Divergence Theorem, we can give a vemtor 6f Stokes’s Theorem. Given a scalar
field U, we letF = Uafor some constant vectar Then

[5Ua.dr = /y(Dx(U ))-dS

/,((DU)xa)-ds
4

a./dex (V).

The first line is Stokes’ theorem, the second follows fromrille Eq 3.8 for curl of a product, and the third
from the rules for the scalar triple product. Now we can take ¢onstanga outside the integral sign; then

56



choosinga =i, j andk in turn, we derive the vector equation

Udr :/ dSx (OU)
,(])

(74

Exercise 4.6. State Stokes’s theorem.
Evaluate both sides of the theorem for the vector fleld yi + Z + yk and the surfac& of the hemisphere
X2 +y2+ 272 =4 in z> 0, with normal in the positive-direction. [You may find the expressions relating
Cartesian and spherical polar coordinates useful.] O

Exercise 4.7. Use the surface integral in Stokes’s theorem to calculaeiticulation of the field~
F=2yi+3x -2k

around the curv& where? is the circlex? 4+ y? = 9 in thex-y plane, counterclockwise when viewed from
z> 0. [Answer 91.] O

We can use the Divergence and Stokes’s theorems to derigeratbults including, later on, the forms of
divergence and curl in curvilinear coordinates in Chaptérttose formulas could be found, more laboriously,
by direct calculation from the Cartesian definitions by gpmd the chain rule. Another important application
will be given next.

4.7 Conservative Fields and Scalar Potentials

(See Thomas 16.3)

Conservative vector fields play an important role in manyliappons. A vector fieldF is said to be a
conservative fieldiff the value of the line integrafF(?F -dr between endpoints P and Q depends only on
the endpoints P and Q, amibt on the path taken between them. An example of a vector fieldtwisi
not conservative is the one in Example 4.2 — we explicitlynfddifferent answers for the same endpoints,
depending on the path taken.

For a conservative vector fielg, the integralf F.dr around anyclosedpath must be zero (because the
value will be given by the trivial path which always staysfa given point). So iF is a force, for example,
the net work in going round a path back to where one startedris. 2nergy is conserved, hence the name
conservative (nothing to do with politics).

We first state and prove the important result that (subjedifterentiability conditions) a vector field is

conservative iff it is irrotational (or curl-free). In itdaement, ‘contractible’ means we can continuously
deform the region so it squashes to a point. (A torus, for ganis not contractible.)

Theorem 4.4 In a contractible region,

OxF=0 <= dascalarfieldp(r) such thaF = Og. (4.12)

Note: Such ag is called a(scalar) potentialfor F. The theorem says a vector field is conservative iff it has
a scalar potential.

Proof:

(«<): This was done at the end of Chapter 3, where we proved theitgénx (O¢) = O for any g,
subject to the partial derivatives being well-behaved. STifiee = O thenO x F = 0.
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(=): Givenl x F = 0, we proceed by defining the scalar fieir ) by

MQ:AFW, (4.13)

wherea is an arbitrary but fixed point; note the line integral hasaacanswer, s@is a scalar field. We will
soon show thatlp = F as required. First though, since we have not defined the pdib taken fronator,
we must show that the integral is independent of the pattdle that thep defined above is well-defined.

Suppose tha¥) and%, are two different curves frormtor. We need to show that

F.dr = F.dr.

@ “

To prove this, lets” be the closed curve formed by followirgj from ato r and then takings, backwards
to get fromr back toa. Let.” be a surface whose boundaryds Then:

F.dr — Fdr = /F.dr
2 & ¢

- /(DdeS
5
=0
The first line is because following- backwards gives us a minus sign in the line integral; the rse:tine
is Stokes’ theorem for the closed cur¢é Hence, the value o only depends om, but not on the path

taken fromator, and sop(r) is well-defined. [Note: Thomas gives a direct proof of the patthependence
property forF = 00V.]

Next we need to showlg = F as we wanted: we consider a small chadgeand we get a small change
00,
r+or
6(pz(p(r+5r)—(p(r):/ F-dr = F(r)-or,
r
and this is true for any (infinitesimal) vectdr. But by definition ofJg in Chapter 19 = (Og) - or. Hence
Og-or=F-or.

But this is true forall or, sod@ = F, as we wanted to show. Q.E.D.

Once we have done this, we easily get the line intedfal dr between any two points, say to ra:
choose a path from; back toa, and then froma to r,; since taking a line integral backwards gives us a
minus sign in the result (as for swapping upper/lower lirmta 1D integral), we get

[ Fdr=otr2) - gty

Also note that we can add a constangterithout changindl; adding a constant is essentially equivalent
to changing our choice of fixed poiatin eq. 4.13, sincep(a) = 0 from the original definition.

In the case wherE is a force, it is usual to defing(r) = — /1 F.dr with an extra (arbitrary) minus sign
compared to (4.13); then we get= —[¢, and@ can then be identified with the potential energy, which
decreases when a body moves in the direction of the force fiiocand increases in the opposite direction
“up”. Note again that the value @f is only fixed up to an additive constant, which depends on ttivéce of
reference poina.

Warning: There is a possible snag with notation here: it is very comfooinistorical reasons to use
the symbolg (the Greek letter “phi”) for a scalar potential, or sometgne by analogy with Voltage in
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electrostatics. Thap is obviouslynot related to the coordinate angewhich will appear later in spherical
polar coordinates; or alsé can possibly get confused with volume. Sometimes the sysrb@uppercase
phi) or ¢ (curly phi) are used for the potential, but this still looksitg similar.

Unfortunately, this somewhat confusing notation is hgauged in many textbooks and old exam ques-
tions, so it can’t be escaped and you just have to be aware lof ihost cases it is reasonably obvious from
the context which is which.

Example 4.11. Show thatr = (z, z x+Y) satisfied] x F = 0, and find a scalar fielg such that = O¢.

[Note that in answering questions of this sort, where yotettaviind ¢, you might as well do that first since
F = O¢ immediately implied] x F =0.]

A simple way to do these problems is by direct evaluation eflite integral (4.13), taking as the curge
as the straight line from the origin (so we are takénig be the origin) to the desired poinX, Y, Z) say. The
lineisr=t(X,Y,Z),0<t<1,sod =(X,Y, Z)dt, while for this example, on that life= (Zt, Zt, Xt+Yt).
Thus the integral is

1 1
/F.dr:/ [XZt+YZt+(Xt+Yt)Z]dt:(2XZ+2YZ)/ tdt = (2XZ+ 2Y D)t =XZ+YZ
€ 0 0

Hence for a general point we hage= xz+yz We can also add any constantg@qsince it will disappear
in Og): this expresses the freedom of choice of thim (4.13). [In physical uses of scalar potentials, the
reference point is often taken to be at infinity.]

An alternative method is as follows: it is included to empbasome useful points about integrating sets
of partial differential equations (i.e. differential edicams with partial derivatives).

We want 9o 30 3
_ (99 99 o9
(27 Z7X+y)_ (0X7 ﬁya dz) (414)
Equating the first components and integrating with respexgives
Z:Z—()’::z:>¢:x2+f(y,z) (4.15)

where f is an (as yet) arbitrary function of andz Note thatf is a ‘constant of integration’ as far as
differentiation with respect ta is concerned: when integrating partial derivatives we haveplace simple
constants by functions of those variables not yet takendntmunt. The second components give

_do _ of
z= ay from (4.14)= ay from (4.15)

Hence Py
ay ~ 27 f(y,2 =yz+9(2) .
No x appears irg since we already know thdtdoes not depend on So, substituting this in (4.15),
@ =xz+Yyz+9(2) (4.16)

(g arbitrary as yet). Finally, the third components similaglye

¢ _
e from (4.14)= x+y+ & from (4.16)

Henceg has a zero derivative, i.e. is constant and theregggaven by

d
X+y= J

@ = Xz+ yz+ const
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(We could drop the constant here as withougitvould still fulfil the conditions of the problem.) Hence
OxF=0.

Example 4.12. The gravitational force on a ball of massis F = (0,0,—mg). If the gravitational
acceleratiorg can be assumed to be constant (which is an excellent appatigimfor everyday life:g ~
9.8ms?) thenF = —¢p where@ = mgzfconst.,z being measured, say, from the surface of the Earth. (We
can measure from wherever we wish, since a change of origin just chanigestbitrary constant ip). In
this casap is thegravitational potential energy.

Exercise 4.8. Show thatr = (yz zx xy) is conservative and find a suitable potengiaduch that = Oe.
[Answer: ¢ = xyz+-const.] O

Exercise 4.9. For each of the following field&, evaluatd x F and either find the general solutign
satisfyingF = O everywhere, or show that no sugrexists:
(@) F = X% +y? + 2z
(b) F = Z2i + %3 4+ y°k
(c) F = 372 + 3y?j + 6x&
(d) F=yZ —xyk.

a

The rest of this chapter will not be lectured and is not examimble. It is included for reference, for
completeness, and to give intellectual respectability byrpving the main theorems.

4.8 \Vector Potentials

(Note: this is not on the syllabus. Itis included for comptedss, for the sake of those who take later courses
where it is used.)

We have seen that, i x F = 0, then there exists a scalar potentpduch that = O¢. There is a similar
resultif 0- F = 0 instead:
Theorem 4.5 In a contractible domain,
O-F=0 = 3JA(r) such thaF =0 x A.
In the (<) direction, this is the identity discussed before. The piiadhe other direction consists of
writing down suitable integrals, in a way analogous to theopof (4.12), and is messy so we omit it.

The functionA is called avector potential. Note that one can always add an arbitrary function of the
form D@ to A and get another perfectly good vector potentialfpbecausél] x (dg) is zero for anyp, and
S0
Ox(A+0p)=0xA+0Ox (0¢p)=F+0=F.
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In physical contexts this is referred to as a gauge transitian, and provides the basic example whose
generalization gives all the modern gauge field theorieshykjes, the basis of our understanding of all
microsopic physical processes.

Example 4.13. Any magnetic fieldB satisfied]-B = 0. So, for example, consider a constant magnetic
field B = (0,0,Bp) in thez—direction. A suitable vector potentil in this case is

( 1Boy, lBoX O)

<0Az OAy 0A A, OA ﬁAX)

since

OxA =

dy 0z’ dz Ix’ Ix ady

1 1
<0—0,0—0,§Bo—(—550))
B

4.9 Derivations of the main theorems

(See Thomas 16.7 and 16.8)
[This section is not examinable]

We now return to the proofs of the Divergence and Stokes’ofiéras.

Consider first the “proof” of the Divergence Theorem usingtaagular boxes. Take a bdx;, xp] x
[Y1, ¥2] X [21, Zo]. Then for a vectoA = Agi + Ayj + Ask,

om (9A2 | 9
[ (252
//A1 dydz+//A2 dxdz+//A3 20 dly
/ Aqdydz— / / Aqdydz+ / / Agdxdz— / / Agdxdz (4.17)
front back right end left end

+ / / Agdxcly — / / Agdxdy.
top bottom

On the front of the box (i.e. the surfage= xp) dS = idydz while on the backX = x;) dS= —idydz so the first
two terms in (4.17) arg A.dSfor the front and back. Similarly for the remaining terms.

/(D-A)dv

One can complete a “proof” by decomposing a volume into susted and adding the results, noting that
the surface integrals on a face common to two boxes will dasroanother. This overlooks the difficulty of
proving that the surface integral for all the boxes gives ez limit for the smooth surface (for the volume
integral this just follows from the definition of such intedg).

Instead we can work towards a correct proof by first noting tha terms match up in the sense that

/ / /j %dxdydz: / /yAg(dS)z (4.18)

for the box. (What we thus really do is prove the theoremRct Ask and then add together three such
results.)
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We now have to cope with some technical points
1. We must be able to integrate the derivativeg.aince. A sufficient condition is that all first derivatives of
A are piecewise continuous. If the derivatives have disoaittes we have to do the proof for each smooth
piece separately and then add the results.
2. That first point implieg\ itself must be piecewise continuous.
3. We require the surface to be bounded (so we have a finit¢ @neeclosed (so we have a finite volume).
4. We must to be able to integrafeA.dS. So we want to be able to assign coordinates on pieces of the
surface S, sayu, v), in such a way thate, x e,)dudv can be defined and calculated, i.e. we want the map
R? - R3: (u,v) — (x(u, V), y(u, V), Z(u, v)) to be (piecewise) sufficiently differentiable.

These assumptions ensure we can break D up into convex pi€mwex’ means that any line cuts the
surface at most twice. So now we have the form

Theorem 4.6 If .7 is a bounded closed piecewise smooth orientable surfadesing a volume?, and ifF
is a vector field all of whose first derivatives are continuaghen

/D-FdV:/ F.ndS:/ F.ds,
9 54 54

wheren is the normal outward-pointing frory.

Figure 4.3: Convex surface used in the proof of the Divergerteeorem

Proof: [This proof is more-or-less identical, with slight chasge notation, with the one given by
Thomas.] We breal” into convex pieces and first prove the result for a single eamiece (which we
call 21). In fact we need only prove (4.18). Consider lines paratiethe z-axis. Those which mee¥;
either meet it twice or touch it on a closed curve. Divide thgace into.”™ and.#~, the upper and lower
halves (i.e.~ is where the lines parallel to theaxis first meet?: see Figure 4.3). Then, just using the
fundamental theorem of calculus,

/1] 1‘%3dxdydz= [ [, Ay zaay— [ [ Aoxyzdxay
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On.7*, (Agk).dS = Ag|dS| cosy = Agdxdy and similarly on~. Hence we have shown that

/ / /j 1%dxdydz_ / /y(Agk).dS

and adding similar results fok; and A, we get the Divergence Theorem fér,. When we re-combine
the convex pieces, the surfaces where they join appear twittee surface integrals, once with each of the
two possible signs for the normal, so these parts cancel nwother and only the integral over the bounding
surface remains. Q.E.D.

We showed above that the Divergence Theorem implies Grdsgtsem. We only have Stokes’s theorem
left to prove. The conditions are arrived at by similar calesations to those for the Divergence Theorem.

Theorem 4.7 For any piecewise smooth surfacé bounded by a piecewise smooth cut&en which(d x F

is piecewise continuous,
/ 0 x F.dszf F.dr,
5% 3

where the integral roun& is taken in the direction which is counter-clockwise as deem the side of
pointed to bydS.

Proof: The conditions imply that the surface can be decomposedkitep which project to regions in
one of the planes of Cartesian coordinates; without losgpnécglity say the¢x, y) plane. We prove the result
for one such region. Suppose we have coordinétes) on this region. We also consider only the terms
involving P whereF = (P, Q, R) (i.e. we prove the result fdf = Pi first).

X dx
0 X ,
//[ ( < )> u <P<a—v)>}dudv by Green’s theorem
oPodx JPox
B //(EW‘W%)"'“"V

// 0P 0x 0PQ+EQ ox Ed_erdeeranz X dudy
dxﬁu dyou 0dzdu) ov oxov odyov 0dzov au

using the Chain Rule
B 0P [dyodx Jdyodx 0P (0z0dx 0z0dx
= //d_y(ﬁﬂ_ﬂﬁ>dum+//5<ﬁﬂ_ﬂﬁ>duw

and taking the cross product of

_[(Ox. dy. 0z
dry = <%I+—J +—k> du,

easily shows that the double integrals give

[ [ (-5ws:+Sesy)

which is the part ofd x F.dS involving P. To complete the proof we add the parts wighandR and add
together the results from the pieces into which a gengtdlas to be split. Q.E.D.
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