Chapter 3

Vector differentiation, the [ operator,
grad, div and curl.

Last update: 20 Oct 2010.

Syllabus topics covered:
1. Vector fields
2. Grad, div and curl operators in Cartesian coordinatesa@ydiv, and curl of products etc.

Here we cover differentiation of vectors. Note that thigeti from the gradient introduced in Chapter 1,
where we obtained a vector by differentiating a scalar field.

3.1 \Vector functions of one or more variables

(See Thomas 13.1)

In many physical contexts one is interested in vectors thay with position or time. For example, the
position of a point can be described by a vectorhus, if we consider a moving particle, its position can be
described as a function of tinidy the vector (t), and its rate of change with respect will be the velocity
(which has magnitude and direction, i.e. is a vector: its mitage is the speed). The position vector is then
a function of one variable.

Another context is where we have a vector defined at each,magE (r) = F(x, y, z) and a curve with
a parameteu, say, so its points aré(u), y(u), z(u)). Then we can define a vector functionwfF(u) =
F((x(u), y(u), z(u)). We can deal with this and the moving particle case as follows
A vector function of a scalan, F(u), can be defined by specifying its components as functioms of
F(u) = (fu(u), f2(u), fa3(u)).

The derivative &/du of F with respect tas is then:

¢k _ (dh dfy dfe
du \du’du’du)/’
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This simply goes back to the fundamental definition of a denre:
de . F(u+du)—F(u)
— = lim —————,
du su—0 ou

Clearly one can compute higher derivatives, such&/du?, by differentiating the components &fthe
required number of times.

Example 3.1. If r(t) is the position vector of a particle, as a function of timéhen d /dt is the velocity
v of the particle. Also d/dt = d?r /dt? is the particle’s acceleration.

Example 3.2. The continuous parametecan take all real values. Write down the derivativegdi and
d?r /dt? for the vector = (sint)i +tj. Also, sketch the curve whose parametric equationssr (t).

The first and second derivatives are
dr
dt
d?r
dtZ

(cogt)i+j,

(—sint)i.

The sketch is shown in Fig. 3.1.

2

— 2

Figure 3.1: Sketch of the curve defined parametrically by (sint)i +tj

Itis easy to prove, by writing out the components and calgdierms, that iF andG are vector functions
of u, then

TR TR T
Proof:
dFG) _ d
0 = gy faot f202+ fags)
_ dgl dgz dgg df; df; dfs
= flm—FfZE—FfSE—Fmgl—Fmgz—Fmgs

dG dF
= F—+—0G. .E.D.
du + du Q
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It's also straightforward to show that cross products whkk same wayExercise 3.1. Sketch the curves
whose parametric equations are

(@)r = (3sinmt)i + (2costt)j
(b) r = (cosrt)j
(c)r =ti+1t%k

(- <t < ), and write down the derivatives gdt and d'r /dt? where they are defined. O

If Fis a vector function of more than one variable, $ay F(u, v), then it is straightforward to define its
partial derivatives with respect toor v, in terms of partial derivatives of its components. Thus gicample,
if F= (fo(u,v), f2(u, v), fa(u, v)), then

OF _ (01 0 0
ou \du’'du’du)/’

We have already met an example of this for the surfaeer (u,v) in Chapter 2.

3.2 \ector Fields

(See Thomas 16.2)

For the rest of this course, we shall be concerned mostly vattors and scalars which depend on position
in three-dimensional space, i.e. which are functions aéf¢hrariables, y, z. We have already met a function
f(x,y,2) wheref is one number (a scalar); from here on, this will be callestalar field, where the word
“field” means that it is a function ofx,y,z), and the “scalar” means the function value at each point is a
scalar.

( Note : Sometimes things may depend also on a fourth variable, aadimet, or we may only be
interested in their values on a particular patl) wheresis a parameter; but this doesn’t change the key
results.)

A vector depending on position in 3-D space is said to cautstiévector field. We write a vectoF that
varies with position as
F=F(XYy,2) =F(r)
An example is shown in Figure 3.2. In order to actually speaifrector fieldF, we need to write it out in
terms of its components, each depending on position, so

F = (FR(xY2), R(xY.2), F(xY,2)
= Fl(X, Y, Z)I + FZ(Xv Y, Z)J + F3(X7 Y, Z) k

Clearly this is rather cumbersome so we’ll often wriér) or just F; but remember to actually calculate
things you'll often need to write it out in full.

We have already met one example of a vector field: given astiald U, we have defined the gradient

as Jou ou ou
U = WI + a—yj +E

Here[U is itself a vector, and it (usually) depends on positionts® actually a vector field.
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Figure 3.2: Example of a flow. In this case the speed and dreet each point is a function of the position
(X,y)

A physical example of a vector field is the velocity in a flowihgd (e.g. the water in the oceans, moving
because of currents and tides; or the air in the atmospherenmbecause of winds). The velocity at any
point in the fluid is a vector quantity — it has magnitude anéction. If we attach a velocity vector to each
point of the flowing fluid, we have a vector field defined in thgiom occupied by the fluid.

Another physical example is a magnetic field; now things atenecessarily moving with time, but the
magnetic field has a direction and a strength at each poipioes so at each point in space we have a vector;
and this vector (in general) varies with position so it is ateefield.

We can add vector fields and multiply them by a constant in bwéoais way, so iF andG are two vector
fields thenF + G is also a vector field, and KX is a constant theAF is also a vector field.

Given a vector field, we could of course now differentiate teetor field with respect to each of the
coordinategx, y, ) in turn, in the manner described in the previous sectiors, giies us a total of 9 partial
derivatives

oF JF 0F1 0F3
ax’ ox' gy’ oz

(In this course, we will be assuming thHats a smoothly-varying function of position, so all theseidmives
exist at all points of interest, except possibly for one or two singular points ).

Note: the set of all 9 derivatives of a component by a coordinatmfoa quantity of a new kind, called
atensor. These are used in fluid dynamics, solid mechanics andvijatior example. However, in this
course we willnot deal with tensors, we will restrict ourselves to forminglacand vector quantities from
these 9 derivatives. To do this, it will turn out that we hawddke certain special combinations which are
“well behaved” if we rotate the,y, z axes; these will turn out to be forming the dot and cross petsiaf [
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with F , where
7} 7] 7]
O=i—+j—+k—=—
ox + ay + 0z
is the operator calleddel” which we met previously in forming the gradient of a scaldliote again that]
is not a true vector (because on its own we can't define itstteagdirection), but it is a vector differential

operator.

3.3 The Divergence of a vector field

(See Thomas 16.8)
Supposd=(x,y,z) = F1i + F,j + Fsk is a vector field. The divergence Bf written divF or O - F is defined to
be

_O0F  O0F  O0FR3

Here divF is a scalar (there are rigj,k’s in the result) and generally depends on position, so itgsaar
field.

We can also get the above result if we write auandF in components,

0 0 0 . .
0-F= (|0_><+Ja/+kd) (F1i + Fpj + Fsk)

and write out all 9 terms then use the properties- 1, i.j =0, etc.

Note that, given a scalar fielfl, we found a vector fieldlf. Here, given a vector fieléF, we have
produced a scalar field - F .

We can also writé] - F as divF. These notations are completely interchangeable.

It is easy to show, by direct calculation, that div behavesxgected for addition and multiplication by a
constand, i.e.
O-(F+G)=(O-F)+(O-G6) ,

The geometrical meaning of the divergence is as followssitar a point and consider a small closed
surface surrounding that point: if the divergence Hiis positive atr, then on average the vector fididis
pointing “away” from the point and out of the surface. If thigaefgence is negative, then on balarkeés
pointing towards the point and into the surface. (See Fi8)) 3 his idea will be made precise when we come
to the Divergence Theorem in the next Chapter.

A vector field F for which O - F = 0 everywhere is calledivergence-freeor solenoidal The reason
for the namesolenoidalis historical: that a solenoid is a coiled wire that produaenagnetic field, and a
magnetic fieldB is an example of a field that has- B = 0 everywhere (this is an observational fact, and
arises because magnetic monopoles have never been fourathinsmarches).

Example 3.3. If F = 3xy?i + €/ + xysinzk, calculate] - F.

I(3xy?)  9¢  d(xysinz)
O.F= (7x +a—y+T—3y2+xycosz

Exercise 3.2.If F = (y—X)i + (z—Y)j + (x— 2)k, calculatel] - F. [Answer: -3] O
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Figure 3.3: Example of a vector field with positive divergeifeverywhere)E = xi +j.

3.4 The Curl of a vector field

(See Thomas 16.7)
The curl of a vector fieldr is defined to be

0F3 JdR)\. 0F1 O0F3)\. oF  0F
OxF=(—=—"—-—== —_——— — - — | k. 2

x (dy dz>l+<dz dx)l+(dx dy) (3.2
Note that curlF is a vector, since there arg,k on the RHS; and it generally depends on position so it’s a
newvector field.

We can write] x F as curlF — again the two notations are completely interchangeabls.cbnvenient
to remembef] x F in terms of a determinant like the one fox w:

i j k
OxF=|d/dx d/dy 0d/oz|.
F F Fs

Itis easy to verify, by writing out the determinant in fulhat this is equivalent to the original definition.

Itis also easy to show, by writing out the components, thet@ are any two vector fields,
Ox(F+G)=(0x F)+(O0x G)

and if A is any constant then

Ox (AF)=A(0OxF)
Note that the equality abovanly works if A is a constant (independent xfy,z): see the next section for
more general products.

The geometrical meaning of the curl is as follows. Looselgadng, if at some point in space the
component of the curl in the direction is positive, it means that in the vicinity of theipoand in a plane
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normal ton, the vector field tends to go round in an anticlockwise dicecif one looks along vectan. If

the component of the curl were negative, it would mean that#ctor field tends to go round in a clockwise
direction. (See Fig. 3.4.) This idea will be made more peeiben we come to Stokes’s Theorem.
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Figure 3.4: Example of a vector field with positive curl (irethdirection):F = xj — i

A vector fieldF for which O x F = 0 everywhere is calledurl-freeor irrotational.

Example 3.4. The velocity in a fluid isr = yi —xj +0k. FindO x v.

i ] k
Oxv=|d/ox d/dy 0/dz|=i(0—0)+j(0—-0)+k(—-1-1)=—-2k.
y —X 0

Exercise 3.3.1f F = (X2 4+ y? + )i + (x* — y?2)j + xy&, find 0 x F.

O
Exercise 3.4. Find the divergencé€d - F) and curl( x F) of the following vector fields:
F =% +x3 — 3
F = X% — 2xyj + 3xz
F = 0(1/r) wherer = (2 +y2+2)Y2 £ 0.
O
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3.5 Grad, Div and Curl of products

(See Thomas 16.7 and the exercises to 16.8)
We can now consider the application of grad, div and curl tadpcts. We saw above that grad, div and curl
behave in the “obvious” way for addition and multiplicatiby a constant.

However, we can also multiply scalar and/or vector fieldstbgr (in pairs) to get new scalar and vector
fields. Altogether there are four ways to do this, as followfsiwe have two scalar fieldd (r),V(r) we
can ordinary-multiply them (at each poinjtto get a new scalar fieldV = U (r)V(r); likewise for a scalar
field U(r) and a vector field=(r) we can use ordinary multiplication to givéF = U (r)F(r); the value is
a vector, so this is a vector field. Also, if we have two vectelds F,G we can define their dot product
F.G = (F(r)-(G(r)) and their cross produétx G in the obvious way, by taking the dot or cross products of
each field at theame pointr. ClearlyF - G is a scalar field, ané x G is a vector field.

Note: in each of these products, the valuedJoV,F,G are taken at theamepointr in the product. In
longer equations, it is common to not bother writing in aé th)’s, because if something is defined as a field
then we know it is a function af.

We can now apply grad, div and curl to these products, but famlthe following allowed combinations:
to apply grad, we have to have a product which is itself a sd¢@i: that can be either an ordinary multiple
of two scalar fields, sayV, or a scalar product (dot product) of two vector fielHsG.

Div and curl can only be applied to a vector field, so the pdegiboducts we could have look likéF or
the cross produdt x G above.

If we were dealing with functions of a single variable, theidgtive would just give the well-known
product rule for derivatives,
d(fg) .dg df
ax fdx Ty
Some of the vector cases are just like that, but some are noonplicated: we next give the results, and
discuss the details afterwards. There are six cases as wfleed above (two each for grad, div and curl).

(3.3)

For grad of products we have:

ouv) = u{@v)+Vv(Oou) (3.4)
or graduVv) = UgradV +VgradJ
OF-G) = Fx(OxG)+Gx(OxF)+(F.O)G+(G-O)F (3.5)

For div of products we have:

0-(UF) = U(O-F)+(0U).F (3.6)
0-(FxG) = G- (OxF)—F-(0xG) 3.7)

and for curl of products, we have:

Ox (UF) = U(OxF)+(0U)xF (3.8)
= U(OxF)—Fx(OU)
Ox (FxG) = F(0-G)+(G.O)F-G(O-F) - (F.O)G (3.9)

We see above that equations 3.4, 3.6, 3.7 and 3.8 look quiitasito 3.3, except for the minus sign in
3.7 and the possible minus sign in 3.8.
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Note also that Egs. 3.4 and 3.5 are symmetrical in the twalbes, while 3.7 and 3.9 are antisymmetric,
i.e. they must change signi, G are swapped, due to the antisymmetry of the cross product.

Note: if you setU (x,y,z) = A =constant in the above, that is a (very boring) but legal sdahl with
0OU = 0 everywhere; then you'll see Egs. 3.4, 3.6, 3.8 reduce to theoas cases of multiplication by
a constant which we've met before. But for multiplication &#yon-constant scaléf, the second terms
involving U appear on the RHS.

The other two equations 3.5, 3.9 are more complicated, avmvie the new operatofG.0): this is
defined so for a scalar fieM, if G = (Gy, Gp, G3),

+G3d)v Glav ov ov

7} 17}
(G.D)V (Gld +Gy— dy ) ox Gza—y + GBE )
For a vector field~, the notatio G.00)F is to be interpreted a&.00F;, G.0OF,, G.0F;3), takingF = (F1, R, F3);
Thus writing out the whole thing, we have
0F1 0F; 0k R, R R 0F;3 oF3 0F3
+G +G , G +G +G , G +G +G
ox 2ay 397 TLax P2y T8 Py TR 3az)
This is essentially the directional derivative of vedtain the direction ofG, i.e. it is|G| times the derivative
dF/dsalong the direction of the unit vector parallel®

(G.OF = <Gl

(Warning: the form of this definition will not persist in culinear coordinates, but the directional deriva-
tive will remain the same).

Note: you are not expected to memorise Eqgs. 3.5 and 3.9, but you eayvbn those formulae in an
exam question. You should know the definition(&f.00)F above.

Example 3.5. Leta be a constant vector, amd= |r| as usual. Then, using Eq 3.8,

Ox(ra) = r(Oxa)—ax0Or
o2t
r

since the curl of a constaatis zero, andJr =r /r (as in Coursework 2).

Example 3.6. Leta be a constant vector. Then, using Equation 3.9,

Ox(axr) = a@-r)+(r.0)a-r(0-a)—(a.0)r
= 3a+0-0-a
= 2a

(On the top line, the two middle terms differentiate the ¢anta so are both zero, and it is simple to check
from the definitions thall - r = 3 and(a.0)r = a.)

Proofs:

All of the equations 3.4 to 3.9 can be proved directly from thedinitions by inserting components,
expanding out using the ordinary derivative-of-produtt mnd doing some rearrangement; this can be fairly
long, but is not difficult.

For a couple of examples: firstly for Eq. 3.4 it is simple, weéda

0 0 ]
IUV) = i UV)+ (V) kg

% (UV)
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A ouU .oV ou ov ouU

u id—v+'ﬁ—v+kﬁ—v +V id—U+'0—U+kﬁ—U
ox Jo'?y 0z ox Jay 0z
uov)+Vv(Qu) QED.

Next we'll prove Eq.3.8: the produttF is a vector field with componentt) F1, UF,, UF3); inserting
those into the definition of curl,

(0 17} [0 17} 17} 7}
. R ou ok ou _ oF ou R ou
'<U0_y+F36_y_UE_FZE) ) <UE+HE_UW_F3W>

7)) ou oF1 ou

Now we just re-order the 12 terms so that the six with @5 come first, then the six with aRdU come
next; and from the definitions, it becomes clear that thelrésu

Ox (UF) = U(DxF)+(0U)xF  QED.

The others can be proved in a similar way, though it gets daitg for Egs. 3.5 and 3.9. Much shorter
proofs can be given usingdex notation, but this is no longer on the syllabus.

Note: As always, be careful what is a scalar and what is a vector.éRadmer that in an equation
(expressiorl) = (expressior?) 4 (expressiorB) + ...

expressions 1,2,3 ... must be either all scalars or all vecséince you cannot add a scalar and a vector. Check
that you understand that in the above equations, all theesgfans are vectors for 3.4, 3.5, 3.8, 3.9 (because
grad() or curl() give a vector result); while they are scalfar 3.6 and 3.7 because div gives a scalar result.

3.6 Vector second derivatives: applyingl twice

We also have a second set of identities arising from appltyirogof grad, div or curl in succession. Here grad
U and curlF produce vector fields, to which either div or curl can be aggiliwhile divF produces a scalar
field, and then we can apply grad to that. This gives a totavefdilowed cases, which are as follows:

divigrady = 0O-(0U)=0%U (3.10)
curl(gradu) = 0Ox(OU)=0 (3.11)
div(curlF) = 0O(OxF)=0 (3.12)
curlicurlF) = Ox(OxF)=0(0-F)—0% (3.13)
graddivF) = O(0-F)=0Ox (OxF)+0%F (3.14)

We see here that two of these cases (curl grad U, and diFganle identically zero ; this is true for any
fields, as long as they are sufficiently well behaved that tiréigd derivatives commute, see below. These
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two zero cases can be helpfully memorised by the fact thgtvloeild also give zero if] was replaced by an
ordinary vectom ; but beware, this sort of rule is not applicable to every eiguecontaining.

The first equation above Eq. 3.10 introduces a new opefataralled theLaplacian:; this is very im-
portant in a wide range of physical problems, and we will meextensively in Chapter 7. In components,
combining the definition of grad U from Chapter 1 and pluggimat into Eq. 3.1, we get simply

92U N 92U N 92U
ox2 = gy2 = 9z

0U = (3.15)

This Laplacian operator can be applied to either a scalat iel vector field, producing a field of the same
type; in the above is a scalar field an@l?U is another scalar field.

For a vector fieldF, to get[?F we applyd? to each component &f separately, giving
[?F = i0%F1 + ] 0%F + kO%F3
so[J?F is another vector field.

Also note that the last two of the above equations 3.13 andl &4 just a rearrangement of each other,
giving a relationship between curl cf| grad divF and0F.

All of the relations above can be proved by direct substiute.g.:

Proof of 3.11:
i ] k
d/ox d/dy 0/oz
dU/dx dU/dy odU/oz
B (azu 02U 9 U U 02U>_

curl(CU)

Yoz 9z9y’ 0z0x O0xdz IxXdy Oydx

[Note, we assume that the functibhis sufficiently well-behaved for its partial second dernves to com-
mute.]

The relation curl grad) = 0 is particularly useful, since it is often interesting to agkven some vector
field F, can we find a scalar field such thatdU = F ? If we can, this simplifies things from 3 functions of
position to 1 function.

Now we can show that if our giveR has curlF #£ 0, it is not possible to find such a scalar fiédd as
follows: choose any scalar field, and define a vector field = OU. We'd like to find aU such thaH = F.
But from Eq. 3.110 xH =0 x (OU) = 0. ThereforeH # F: so, if curl F # 0 then it isnot possible to
expresd- as the gradient of any scalar fidld

The converse is also true: we will show in the next chapter itheurl F = 0 everywhere in a given

domain, then weanfind a scalar field) with OU = F: and we'll also show how to construct the desitéd
using a suitable integral. This requires vector integrgtiwhich we’ll do in the next Chapter.
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