
Chapter 3

Vector differentiation, the ∇ operator,
grad, div and curl.

Last update: 20 Oct 2010.

Syllabus topics covered:
1. Vector fields
2. Grad, div and curl operators in Cartesian coordinates. Grad, div, and curl of products etc.

Here we cover differentiation of vectors. Note that this differs from the gradient introduced in Chapter 1,
where we obtained a vector by differentiating a scalar field.

3.1 Vector functions of one or more variables

(See Thomas 13.1)
In many physical contexts one is interested in vectors that vary with position or time. For example, the
position of a point can be described by a vectorr . Thus, if we consider a moving particle, its position can be
described as a function of timet by the vectorr(t), and its rate of change with respect tot will be the velocity
(which has magnitude and direction, i.e. is a vector: its magnitude is the speed). The position vector is then
a function of one variable.

Another context is where we have a vector defined at each point, sayF(r) = F(x, y, z) and a curve with
a parameteru, say, so its points are(x(u), y(u), z(u)). Then we can define a vector function ofu, F(u) =
F((x(u), y(u), z(u)). We can deal with this and the moving particle case as follows.

A vector function of a scalaru, F(u), can be defined by specifying its components as functions ofu:

F(u) = ( f1(u), f2(u), f3(u)) .

The derivative dF/du of F with respect tou is then:

dF
du

=

(

d f1
du

,
d f2
du

,
df3
du

)

.
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This simply goes back to the fundamental definition of a derivative:

dF
du

= lim
δu→0

F(u+ δu)−F(u)

δu
.

Clearly one can compute higher derivatives, such as d2F/du2, by differentiating the components ofF the
required number of times.

Example 3.1. If r(t) is the position vector of a particle, as a function of timet, then dr/dt is the velocity
v of the particle. Also dv/dt ≡ d2r/dt2 is the particle’s acceleration.

Example 3.2. The continuous parametert can take all real values. Write down the derivatives dr/dt and
d2r/dt2 for the vectorr = (sint)i + t j . Also, sketch the curve whose parametric equation isr = r(t).

The first and second derivatives are
dr
dt

= (cost)i + j ,

d2r
dt2 = (−sint)i.

The sketch is shown in Fig. 3.1.
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Figure 3.1: Sketch of the curve defined parametrically byr = (sint)i + t j

It is easy to prove, by writing out the components and collecting terms, that ifF andG are vector functions
of u, then

d(F.G)

du
= F.

dG
du

+
dF
du

.G.

Proof:

d(F.G)

du
=

d
du

( f1g1 + f2g2+ f3g3)

= f1
dg1

du
+ f2

dg2

du
+ f3

dg3

du
+

df1
du

g1 +
df2
du

g2 +
df3
du

g3

= F.
dG
du

+
dF
du

.G. Q.E.D.
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It’s also straightforward to show that cross products work the same way.Exercise 3.1.Sketch the curves
whose parametric equations are

(a) r = (3sinπt)i +(2cosπt)j

(b) r = (cosπt)j

(c) r = t i + t2k

(−∞ ≤ t ≤ ∞), and write down the derivatives dr/dt and d2r/dt2 where they are defined. 2

If F is a vector function of more than one variable, sayF = F(u, v), then it is straightforward to define its
partial derivatives with respect tou or v, in terms of partial derivatives of its components. Thus, for example,
if F = ( f1(u, v), f2(u, v), f3(u, v)), then

∂F
∂u

=

(

∂ f1
∂u

,
∂ f2
∂u

,
∂ f3
∂u

)

.

We have already met an example of this for the surfacer = r(u,v) in Chapter 2.

3.2 Vector Fields

(See Thomas 16.2)
For the rest of this course, we shall be concerned mostly withvectors and scalars which depend on position
in three-dimensional space, i.e. which are functions of three variablesx, y, z. We have already met a function
f (x,y,z) where f is one number (a scalar); from here on, this will be called ascalar field, where the word
“field” means that it is a function of(x,y,z), and the “scalar” means the function value at each point is a
scalar.

( Note : Sometimes things may depend also on a fourth variable, suchas timet, or we may only be
interested in their values on a particular pathr(s) wheres is a parameter; but this doesn’t change the key
results.)

A vector depending on position in 3-D space is said to constitute avector field. We write a vectorF that
varies with position as

F = F(x,y,z) ≡ F(r)

An example is shown in Figure 3.2. In order to actually specify a vector fieldF, we need to write it out in
terms of its components, each depending on position, so

F = (F1(x,y,z), F2(x,y,z), F3(x,y,z))

= F1(x,y,z) i +F2(x,y,z) j +F3(x,y,z)k .

Clearly this is rather cumbersome so we’ll often writeF(r) or just F; but remember to actually calculate
things you’ll often need to write it out in full.

We have already met one example of a vector field: given a scalar field U , we have defined the gradient
as

∇U =
∂U
∂x

i +
∂U
∂y

j +
∂U
∂z

k .

Here∇U is itself a vector, and it (usually) depends on position, so it is actually a vector field.
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Figure 3.2: Example of a flow. In this case the speed and direction at each point is a function of the position
(x,y)

A physical example of a vector field is the velocity in a flowingfluid (e.g. the water in the oceans, moving
because of currents and tides; or the air in the atmosphere, moving because of winds). The velocity at any
point in the fluid is a vector quantity – it has magnitude and direction. If we attach a velocity vector to each
point of the flowing fluid, we have a vector field defined in the region occupied by the fluid.

Another physical example is a magnetic field; now things are not necessarily moving with time, but the
magnetic field has a direction and a strength at each point in space; so at each point in space we have a vector;
and this vector (in general) varies with position so it is a vector field.

We can add vector fields and multiply them by a constant in the obvious way, so ifF andG are two vector
fields thenF+G is also a vector field, and ifλ is a constant thenλF is also a vector field.

Given a vector field, we could of course now differentiate thevector field with respect to each of the
coordinates(x, y, z) in turn, in the manner described in the previous section; this gives us a total of 9 partial
derivatives

∂F1

∂x
,

∂F2

∂x
, . . . ,

∂F1

∂y
, . . . ,

∂F3

∂z

( In this course, we will be assuming thatF is a smoothly-varying function of position, so all these derivatives
exist at all points of interestr , except possibly for one or two singular points ).

Note: the set of all 9 derivatives of a component by a coordinate forms a quantity of a new kind, called
a tensor. These are used in fluid dynamics, solid mechanics and relativity, for example. However, in this
course we willnot deal with tensors, we will restrict ourselves to forming scalar and vector quantities from
these 9 derivatives. To do this, it will turn out that we have to take certain special combinations which are
“well behaved” if we rotate thex,y,z axes; these will turn out to be forming the dot and cross products of∇
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with F , where

∇ = i
∂
∂x

+ j
∂
∂y

+k
∂
∂z

is the operator called “del” which we met previously in forming the gradient of a scalar.Note again that∇
is not a true vector (because on its own we can’t define its length or direction), but it is a vector differential
operator.

3.3 The Divergence of a vector field

(See Thomas 16.8)
SupposeF(x,y,z) = F1i +F2j +F3k is a vector field. The divergence ofF, written divF or ∇ ·F is defined to
be

∇ ·F ≡
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
(3.1)

Here divF is a scalar (there are noi, j ,k’s in the result) and generally depends on position, so it is ascalar
field.

We can also get the above result if we write out∇ andF in components,

∇ ·F = (i
∂
∂x

+ j
∂
∂y

+k
∂
∂z

) · (F1i +F2j +F3k)

and write out all 9 terms then use the propertiesi.i = 1, i.j = 0, etc.

Note that, given a scalar fieldf , we found a vector field∇ f . Here, given a vector fieldF, we have
produced a scalar field∇ ·F .

We can also write∇ ·F as divF. These notations are completely interchangeable.

It is easy to show, by direct calculation, that div behaves asexpected for addition and multiplication by a
constantλ , i.e.

∇ · (F+G) = (∇ · F)+ (∇ · G) ,

∇ · (λF) = λ (∇ ·F)

The geometrical meaning of the divergence is as follows: consider a pointr and consider a small closed
surface surrounding that point: if the divergence divF is positive atr , then on average the vector fieldF is
pointing “away” from the point and out of the surface. If the divergence is negative, then on balanceF is
pointing towards the point and into the surface. (See Fig. 3.3.) This idea will be made precise when we come
to the Divergence Theorem in the next Chapter.

A vector fieldF for which ∇ ·F = 0 everywhere is calleddivergence-freeor solenoidal. The reason
for the namesolenoidal is historical: that a solenoid is a coiled wire that producesa magnetic field, and a
magnetic fieldB is an example of a field that has∇ ·B = 0 everywhere (this is an observational fact, and
arises because magnetic monopoles have never been found in many searches).

Example 3.3. If F = 3xy2i +ezj +xysinzk, calculate∇ ·F.

∇ ·F =
∂ (3xy2)

∂x
+

∂ez

∂y
+

∂ (xysinz)
∂z

= 3y2 +xycosz.

Exercise 3.2. If F = (y−x)i +(z−y)j +(x−z)k, calculate∇ ·F. [Answer: -3] 2
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Figure 3.3: Example of a vector field with positive divergence (everywhere):F = xi +yj .

3.4 The Curl of a vector field

(See Thomas 16.7)
The curl of a vector fieldF is defined to be

∇×F =

(

∂F3

∂y
−

∂F2

∂z

)

i +
(

∂F1

∂z
−

∂F3

∂x

)

j +
(

∂F2

∂x
−

∂F1

∂y

)

k. (3.2)

Note that curlF is a vector, since there arei, j ,k on the RHS; and it generally depends on position so it’s a
newvector field.

We can write∇×F as curlF – again the two notations are completely interchangeable. It is convenient
to remember∇×F in terms of a determinant like the one forv×w:

∇×F =

∣

∣

∣

∣

∣

∣

i j k
∂/∂x ∂/∂y ∂/∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

.

It is easy to verify, by writing out the determinant in full, that this is equivalent to the original definition.

It is also easy to show, by writing out the components, that ifF,G are any two vector fields,

∇× (F+G) = (∇× F)+ (∇× G)

and if λ is any constant then
∇× (λF) = λ (∇×F)

Note that the equality aboveonly works if λ is a constant (independent ofx,y,z): see the next section for
more general products.

The geometrical meaning of the curl is as follows. Loosely speaking, if at some point in space the
component of the curl in then direction is positive, it means that in the vicinity of the point and in a plane
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normal ton, the vector field tends to go round in an anticlockwise direction if one looks along vectorn. If
the component of the curl were negative, it would mean that the vector field tends to go round in a clockwise
direction. (See Fig. 3.4.) This idea will be made more precise when we come to Stokes’s Theorem.
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Figure 3.4: Example of a vector field with positive curl (in thezdirection):F = xj −yi.

A vector fieldF for which ∇×F = 0 everywhere is calledcurl-freeor irrotational.

Example 3.4. The velocity in a fluid isv = yi −xj +0k. Find∇×v.

∇×v =

∣

∣

∣

∣

∣

∣

i j k
∂/∂x ∂/∂y ∂/∂z

y −x 0

∣

∣

∣

∣

∣

∣

= i(0−0)+ j(0−0)+k(−1−1)= −2k.

Exercise 3.3. If F = (x2 +y2+z2)i +(x4−y2z2)j +xyzk, find ∇×F. 2

Exercise 3.4. Find the divergence(∇ ·F) and curl(∇×F) of the following vector fields:

F = x2i +xzj −3zk

F = x2i −2xyj +3xzk

F = ∇(1/r) wherer = (x2 +y2+z2)1/2 6= 0.

2
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3.5 Grad, Div and Curl of products

(See Thomas 16.7 and the exercises to 16.8)
We can now consider the application of grad, div and curl to products. We saw above that grad, div and curl
behave in the “obvious” way for addition and multiplicationby a constant.

However, we can also multiply scalar and/or vector fields together (in pairs) to get new scalar and vector
fields. Altogether there are four ways to do this, as follows:if we have two scalar fieldsU(r),V(r) we
can ordinary-multiply them (at each pointr ) to get a new scalar fieldUV = U(r)V(r); likewise for a scalar
field U(r) and a vector fieldF(r) we can use ordinary multiplication to giveUF ≡ U(r)F(r); the value is
a vector, so this is a vector field. Also, if we have two vector fieldsF,G we can define their dot product
F.G ≡ (F(r) · (G(r)) and their cross productF×G in the obvious way, by taking the dot or cross products of
each field at thesame point r . ClearlyF ·G is a scalar field, andF×G is a vector field.

Note: in each of these products, the values ofU,V,F,G are taken at thesamepoint r in the product. In
longer equations, it is common to not bother writing in all the (r)’s, because if something is defined as a field
then we know it is a function ofr .

We can now apply grad, div and curl to these products, but onlyfor the following allowed combinations:
to apply grad, we have to have a product which is itself a scalar field: that can be either an ordinary multiple
of two scalar fields, sayUV, or a scalar product (dot product) of two vector fields,F ·G.

Div and curl can only be applied to a vector field, so the possible products we could have look likeUF or
the cross productF×G above.

If we were dealing with functions of a single variable, the derivative would just give the well-known
product rule for derivatives,

d( f g)

dx
= f

dg
dx

+
df
dx

g. (3.3)

Some of the vector cases are just like that, but some are more complicated: we next give the results, and
discuss the details afterwards. There are six cases as we’veoutlined above (two each for grad, div and curl).

For grad of products we have:

∇(UV) = U(∇V)+V(∇U) (3.4)

or grad(UV) = UgradV +VgradU

∇(F ·G) = F× (∇×G)+G× (∇×F)+(F.∇)G+(G ·∇)F (3.5)

For div of products we have:

∇ · (UF) = U(∇ ·F)+ (∇U).F (3.6)

∇ · (F×G) = G · (∇×F)−F · (∇×G) (3.7)

and for curl of products, we have:

∇× (UF) = U(∇×F)+ (∇U)×F (3.8)

= U(∇×F)−F× (∇U)

∇× (F×G) = F(∇ ·G)+ (G.∇)F−G(∇ ·F)− (F.∇)G (3.9)

We see above that equations 3.4, 3.6, 3.7 and 3.8 look quite similar to 3.3, except for the minus sign in
3.7 and the possible minus sign in 3.8.
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Note also that Eqs. 3.4 and 3.5 are symmetrical in the two variables, while 3.7 and 3.9 are antisymmetric,
i.e. they must change sign ifF,G are swapped, due to the antisymmetry of the cross product.

Note: if you setU(x,y,z) = λ =constant in the above, that is a (very boring) but legal scalar field with
∇U = 0 everywhere; then you’ll see Eqs. 3.4, 3.6, 3.8 reduce to the obvious cases of multiplication by
a constant which we’ve met before. But for multiplication bya non-constant scalarU , the second terms
involving ∇U appear on the RHS.

The other two equations 3.5, 3.9 are more complicated, and involve the new operator(G.∇): this is
defined so for a scalar fieldV, if G = (G1, G2, G3),

(G.∇)V =

(

G1
∂
∂x

+G2
∂
∂y

+G3
∂
∂z

)

V = G1
∂V
∂x

+G2
∂V
∂y

+G3
∂V
∂z

,

For a vector fieldF, the notation(G.∇)F is to be interpreted as(G.∇F1, G.∇F2, G.∇F3), takingF = (F1, F2, F3);
Thus writing out the whole thing, we have

(G.∇)F =

(

G1
∂F1

∂x
+G2

∂F1

∂y
+G3

∂F1

∂z
, G1

∂F2

∂x
+G2

∂F2

∂y
+G3

∂F2

∂z
, G1

∂F3

∂x
+G2

∂F3

∂y
+G3

∂F3

∂z

)

This is essentially the directional derivative of vectorF in the direction ofG, i.e. it is |G| times the derivative
dF/dsalong the direction of the unit vector parallel toG.

(Warning: the form of this definition will not persist in curvilinear coordinates, but the directional deriva-
tive will remain the same).

Note: you are not expected to memorise Eqs. 3.5 and 3.9, but you may be given those formulae in an
exam question. You should know the definition of(G.∇)F above.

Example 3.5. Let a be a constant vector, andr = |r | as usual. Then, using Eq 3.8,

∇× (ra) = r(∇×a)−a×∇r

= 0−
a× r

r

since the curl of a constanta is zero, and∇r = r/r (as in Coursework 2).

Example 3.6. Let a be a constant vector. Then, using Equation 3.9,

∇× (a× r) = a(∇ · r)+ (r .∇)a− r(∇ ·a)− (a.∇)r

= 3a+0−0−a

= 2a

(On the top line, the two middle terms differentiate the constanta so are both zero, and it is simple to check
from the definitions that∇ · r = 3 and(a.∇)r = a.)

Proofs:

All of the equations 3.4 to 3.9 can be proved directly from thedefinitions by inserting components,
expanding out using the ordinary derivative-of-product rule and doing some rearrangement; this can be fairly
long, but is not difficult.

For a couple of examples: firstly for Eq. 3.4 it is simple, we have

∇(UV) = i
∂
∂x

(UV)+ j
∂
∂y

(UV)+k
∂
∂z

(UV)
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= i(U
∂V
∂x

+V
∂U
∂x

)+ j(U
∂V
∂y

+V
∂U
∂y

)+k(U
∂V
∂z

+V
∂U
∂z

)

= U

(

i
∂V
∂x

+ j
∂V
∂y

+k
∂V
∂z

)

+V

(

i
∂U
∂x

+ j
∂U
∂y

+k
∂U
∂z

)

= U(∇V)+V(∇U) QED.

Next we’ll prove Eq.3.8: the productUF is a vector field with components(UF1, UF2, UF3); inserting
those into the definition of curl,

∇× (UF) = i
(

∂
∂y

(UF3)−
∂
∂z

(UF2)

)

+ j
(

∂
∂z

(UF1)−
∂
∂x

(UF3)

)

+k
(

∂
∂x

(UF2)−
∂
∂y

(UF1)

)

= i
(

U
∂F3

∂y
+F3

∂U
∂y

−U
∂F2

∂z
−F2

∂U
∂z

)

+ j
(

U
∂F1

∂z
+F1

∂U
∂z

−U
∂F3

∂x
−F3

∂U
∂x

)

+k
(

U
∂F2

∂x
+F2

∂U
∂x

−U
∂F1

∂y
−F1

∂U
∂y

)

Now we just re-order the 12 terms so that the six with aU∂Fi come first, then the six with anFi∂U come
next; and from the definitions, it becomes clear that the result is

∇× (UF) = U(∇×F) + (∇U)×F QED.

The others can be proved in a similar way, though it gets quitelong for Eqs. 3.5 and 3.9. Much shorter
proofs can be given usingindex notation, but this is no longer on the syllabus.

Note: As always, be careful what is a scalar and what is a vector. Remember that in an equation

(expression1) = (expression2)+ (expression3)+ . . .

expressions 1,2,3 ... must be either all scalars or all vectors, since you cannot add a scalar and a vector. Check
that you understand that in the above equations, all the expressions are vectors for 3.4, 3.5, 3.8, 3.9 (because
grad() or curl() give a vector result); while they are scalars for 3.6 and 3.7 because div gives a scalar result.

3.6 Vector second derivatives: applying∇ twice

We also have a second set of identities arising from applyingtwo of grad, div or curl in succession. Here grad
U and curlF produce vector fields, to which either div or curl can be applied; while divF produces a scalar
field, and then we can apply grad to that. This gives a total of five allowed cases, which are as follows:

div(grad U) = ∇ · (∇U)≡ ∇2U (3.10)

curl(gradU) = ∇×(∇U) = 0 (3.11)

div(curl F) = ∇·(∇×F) = 0 (3.12)

curl(curl F) = ∇× (∇×F) = ∇(∇ ·F)−∇2F (3.13)

grad(div F) = ∇(∇ ·F) = ∇× (∇×F)+ ∇2F (3.14)

We see here that two of these cases (curl grad U, and div curlF) are identically zero ; this is true for any
fields, as long as they are sufficiently well behaved that the partial derivatives commute, see below. These
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two zero cases can be helpfully memorised by the fact that they would also give zero if∇ was replaced by an
ordinary vectora ; but beware, this sort of rule is not applicable to every equation containing∇.

The first equation above Eq. 3.10 introduces a new operator∇2 called theLaplacian; this is very im-
portant in a wide range of physical problems, and we will meetit extensively in Chapter 7. In components,
combining the definition of grad U from Chapter 1 and pluggingthat into Eq. 3.1, we get simply

∇2U ≡
∂ 2U
∂x2 +

∂ 2U
∂y2 +

∂ 2U
∂z2 (3.15)

This Laplacian operator can be applied to either a scalar field or a vector field, producing a field of the same
type; in the above,U is a scalar field and∇2U is another scalar field.

For a vector fieldF, to get∇2F we apply∇2 to each component ofF separately, giving

∇2F = i∇2F1 + j∇2F2+k∇2F3

so∇2F is another vector field.

Also note that the last two of the above equations 3.13 and 3.14 are just a rearrangement of each other,
giving a relationship between curl curlF, grad divF and∇2F.

All of the relations above can be proved by direct substitution, e.g.:

Proof of 3.11:

curl(∇U) =

∣

∣

∣

∣

∣

∣

i j k
∂/∂x ∂/∂y ∂/∂z

∂U/∂x ∂U/∂y ∂U/∂z

∣

∣

∣

∣

∣

∣

=

(

∂ 2U
∂y∂z

−
∂ 2U
∂z∂y

,
∂ 2U
∂z∂x

−
∂ 2U
∂x∂z

,
∂ 2U
∂x∂y

−
∂ 2U
∂y∂x

)

= 0.

[Note, we assume that the functionU is sufficiently well-behaved for its partial second derivatives to com-
mute.]

The relation curl gradU = 0 is particularly useful, since it is often interesting to ask, given some vector
field F, can we find a scalar fieldU such that∇U = F ? If we can, this simplifies things from 3 functions of
position to 1 function.

Now we can show that if our givenF has curlF 6= 0, it is not possible to find such a scalar fieldU , as
follows: choose any scalar fieldU , and define a vector fieldH = ∇U . We’d like to find aU such thatH = F.
But from Eq. 3.11,∇×H = ∇× (∇U) = 0. ThereforeH 6= F: so, if curl F 6= 0 then it isnot possible to
expressF as the gradient of any scalar fieldU .

The converse is also true: we will show in the next chapter that if curl F = 0 everywhere in a given
domain, then wecanfind a scalar fieldU with ∇U = F: and we’ll also show how to construct the desiredU
using a suitable integral. This requires vector integration, which we’ll do in the next Chapter.
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