
Chapter 2

Curves, Lengths, Surfaces and Areas

Last revised 13 Oct 2010.

This chapter gives an overview of various methods for describing curves in 2-dimensional and 3-dimensional
space, including parametrised curves, curves in polar coordinates, and some vector notation.

We then move on to formulae involving integration for the arc-length of curves in each of these cases,
and for the area enclosed by curves in 2-dimensional polar coordinates.

Finally we extend this to defining parametrised surfaces in 3dimensions (using 2 parameters), and the
areas of these surfaces.

2.1 Parametrised curves

2.1.1 Parametrised curves: definition

(See Thomas 3.5)

By now you are familiar with expressing a curve on a 2-dimensional plane in Cartesian coordinates(x,y)
as

y = f (x) ; (2.1)

where f (x) is a given function, and may be any combination of polynomials, trigonometric functions, ex-
ponential functions (called “elementary functions”), or more complicated functions. This form for a curve
is called “explicit form” since a givenf specifies exactly how to calculatey for any value ofx. Clearly for
a given functionf (x) we can draw a graph of this function by taking many values ofx with suitably small
steps, evaluatingf (x) at each of these so we have a “dot” at(x,y = f (x)) and then “joining the dots”. Iff is
a continuous function, then there are no “gaps” in this curve.

This is straightforward, but we have the limitation that foreachx the curve has a unique value ofy (the
converse is not true, i.e. choosing a particular valuey0 for y and solving the equationf (x) = y0 may give
none, one or many solutions known as “roots” forx) . So, a curve such asy = f (x) can have “wiggles” in the
y-direction but not in the x-direction.
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In a few special cases we can have multiple values fory at a givenx, e.g. for the familar case of the circle
x2 + y2 = a2 we can writey = ±

√
a2− x2, and the± term gives 2, 1 or 0 solutions fory depending whether

|x| < a, x = a, or |x| > |a| respectively ; but this quickly becomes excessively complicated for more general
curves.

A second way to represent a curve in a plane is as the set of all points satisfying an equation such as
f (x,y) = 0 or f (x,y) = c, wherec is a constant; heref depends on bothx andy and may not be separable;
this is called “implicit form”. This has some advantages we will see later, for example choosing different
values ofc can give us a “family” of different curves from one functionf ; however, a clear disadvantage is
that there is no easy way (in general) to calculatey at a givenx = x0; so sketching the curve (or programming a
computer to sketch it) can be cumbersome, unless we can recognise the form of the solution from experience.

A third way to represent a curve in a 2-dimensional plane is via parametrisation: now we definetwo
arbitrary functionsf (t),g(t) of a new real variablet, and we define our curve calledC as the set of all points
where

x = f (t), y = g(t) hence (x,y) = ( f (t),g(t)) (2.2)

for any value oft in a givendomain (which may be finite or infinite). Here we call C theparametric curve,
t is the parameter, andx = f (t),y = g(t) are theparametric equations for the curve. These equations
together with the defined domain oft constitute a complete definition called theparametrisation of the
curve.

Given the above, it is clear that any value oft maps to a single point in the(x,y) plane; it is also fairly
obvious that if the functionsf ,g are both continuous, then the resulting curve C is also continuous. (To prove
this, pick a valuet0 giving a point on the curvex0,y0; then draw a tiny circle radiusδ aroundx0,y0. If f ,g
are both continuous we can find some range oft ± ε for which the curve is contained inside the above circle,
i.e. the curve has no “gaps”; if there were a finite gap in the curve, then eitherf or g must not be continuous,
contradicting our assumption).

Using parametric form, we can express more complicated curves such as figure-eights, spirals and so
on which can self-intersect and/or cross a givenx value many times (including infinitely many), and we can
“sketch the curve” by hand or by computer by just evaluatingf (t),g(t) at a sufficient number of points spaced
in t and “joining the dots”.

Note that heret is not necessarily “time”,t is just a “label” so that each point on the curve is “labelled”
with one value oft, or multiple values if the curve crosses itself at that point.

Clearly if we are given a curvey = g(x), we can put that into parametric form by simply definingf (t) = t
in the above, so thenx = t andy = g(t) = g(x); but the converse generally is not true, so the parametric form
is more general.

Now for a few simple examples: a very simple example is a straight line, which is given by

x = x0 + at, y = y0 + bt ; (2.3)

and the domain−∞ < t < ∞. Here it is easy to see that this parametrises a straight linepassing through
the point(x0,y0) with direction vector(a,b) and slopeb/a. (If a 6= 0, we can rearrange thex−equation to
t = (x− x0)/a, and then substitute that into they− equation to gety = y0 +(b/a)(x− x0).)

Note that many possible choices ofx0,y0,a,b lead to the same straight line, only the mapping fromt onto
points on the line will change. If we want a line through(x0,y0) and(x1,y1) then we seta = x1− x0, b =
y1− y0 in the above, and if we want our “curve” to be a finite straight line segment with endpoints(x0,y0)
and(x1,y1), then we just specify that the domain oft is 0≤ t ≤ 1 above.

Another simple case is given by
x = acost,y = asint ;
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it is clear that this obeysx2 + y2 = a2, so the curveC is a circle of radiusa centred at the origin. Since the
functions sin and cos are both periodic with period 2π , addingn×2π to t (for any integern) gets back to the
samex,y. So if we lett run from−∞ to +∞, the resulting curve loops around the circle an infinite number of
times. So, in this case it is more convenient to specify a finite domain fort, such as 0≤ t < 2π , so over that
range the curve goes round the circle exactly once. (Here we can choose any interval of length 2π , so e.g.
−π < t ≤ π works just as well).

We can generalise this to an ellipse byx = acost,y = bsint; this is just a circle stretched by a factorb/a
in they−direction, so the semi-axes area andb respectively. We can get an ellipse with mid-point at(x0,y0)
with by x = x0 + acost,y = y0 + bsint.

The above illustrates a convenient property: because if we know one parametric curve, we can produce a
shifted copy of it just by addingx0 andy0 to the two functions; or we can stretch or squash it along the axes
by multiplying our two functions by constants.

2.1.2 The cycloid

Another example of a curve which is easy to represent in parametric form is thecycloid, which can be
expressed as

x = a(t −sint) , y = a(1−cost) (2.4)

If we didn’t have theat term in thex−equation above, it is easy to see this would be a circle of radiusa centred
at (0,a); but the additionalat term makes the circle’s centre “roll along” in thex direction ast increases. It
turns out that the above curve is the curve traced out by (for example) a pebble stuck to a bicycle’s tyre as the
tyre rolls along the ground without slipping, so we get a combination of the “axle” going along at constant
rate and the pebble going in a circle round the moving axle. Inthe example above we have chosen things so
the “ground” is the x-axis, the axle goes along the liney = a and the point is at the origin att = 0.

This curve has applications in several real-world problems, and you can see above that it is quite simple to
write in parametric form, but it is complicated in Cartesiancoordinates (there is an expression in elementary
functions forx in terms ofy, but not the other way round).

There are generalised versions of this curve called the epicycloid and hypocycloid which are traced by a
point on one circle rolling around a second circle (instead of along a straight line), and furthermore there are
versions where the “point” is not on the circumference of therolling circle; these are calledtrochoids. (You
won’t be expected to memorise these, but you might be given the equations as part of an exam question so it
is worth knowing the general concept ).

2.1.3 Lissajous figures

A curve parametrised byx = acosk1t, y = bsink2t wherek1,k2 are constants (usually integers), is called a
Lissajous figure. By considering what happens ast varies, we can see that bothx andy oscillate between±a
and±b, so the curve must always lie inside a rectangle with cornersat(±a,±b); but now the curve oscillates
at different rates in thex,y directions, and it can cross itself many times. If we choosek1 = 1,k2 = 2 it will
turn out that we get a figure-of-eight. Ifk1/k2 is a simple fraction, it will turn out that the curve closes back
on itself after a finite number of “wiggles” ; but ifk1/k2 is irrational it can be shown that the curve gets
arbitrarily close to every point in the above rectangle but never returns to exactly the same place; this sort of
thing may be seen in some computer screensavers, where you have an icon wandering around the rectangular
computer screen and it’s helpful for the pattern not to repeat itself.
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2.1.4 Parametric curves in 3 dimensions

We can easily extend the above parametric curves from 2 to 3 dimensions by defining a third functionh(t)
for thez−coordinate, so that

x = f (t), y = g(t), z = h(t). (2.5)

Clearly for each value oft we now get a point in 3-dimensional space, and the set of points( f (t),g(t),h(t))
defines a 1-dimensional curve which is continuous iff ,g,h are all continuous; the basic principles are the
same as in 2 dimensions.

A good example of this is thehelix, where

x = acost , y = asint , z = bt (2.6)

wherea,b are constants. Here ast varies, the distance of the curve from the z-axis is
√

x2 + y2 = a (constant),
so the curve projected onto thex,y plane is a circle, but the z-value is increasing at a uniform rate, so we get a
curve in 3 dimensions looking like the handrail of a spiral staircase winding around thez-axis. Each increase
of 2π in t gives us one full “twist” around thez−axis.
Note: In everyday English, this may be called a spiral: however in maths terminology, the term spiral refers
to various types of 2-dimensional plane curve, while a 3-dimensional curve as described above is properly
called a helix).

Parametric curves may be expressed more compactly in vectornotation asr = r(t), but of course we still
need to define the 3 functions for the 3 independent components ofr , so this doesn’t change any of the results,
it just makes the expressions more compact.

As an example, the parametric representation also makes it quite easy to express curves which aren’t
symmetric about thex,y,z axes: for example, if we choose any two fixed orthogonal unit vectorsu,v, we can
construct an ellipse with centroid atc, semi-major axisa and semi-minor axisb respectively parallel to the
two vectorsu,v, by:

r(t) = c+(acost)u+(bsint)v ; (2.7)

we can of course plug in the components to writex,y,z in terms oft, but then it will be a lot less clear
geometrically.

2.2 Arc Length of a curve

Here we show how to calculate the arc-length of a curve between two given endpoints.

If we choose a point on the curver(t), and a neighbouring pointr(t + δ t), then the vector difference of
these is

r(t + δ t)− r(t) ≈ dr
dt

δ t ; (2.8)

this is the vector separation between the two nearby points on the curve. Taking limits whereδ t tends to zero,
and assuming that the derivative exists, the curve tends to an infinitesimal straight line segment, so we can
define the infinitesimallength ds to be the modulus of the left-hand side above,

ds = |r(t + dt)− r(t)|=
∣

∣

∣

∣

dr
dt

∣

∣

∣

∣

dt (2.9)

=

∣

∣

∣

∣

(

d f
dt

,
dg
dt

,
dh
dt

)∣

∣

∣

∣

dt (2.10)
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Therefore, we have

ds
dt

=

√

(

d f
dt

)2

+

(

dg
dt

)2

+

(

dh
dt

)2

(2.11)

or
ds
dt

=

√

(

dx
dt

)2

+

(

dy
dt

)2

+

(

dz
dt

)2

(2.12)

(This is effectively just Pythagoras’s theorem applied to an infinitesimal segment of the curve, which has the
same length as a straight line joining its endpoints).

So, now we can define thearc length L of the parametric curve between two valuest1, t2 by integrating
the above, giving us

L =

∫ t2

t1

√

(

d f
dt

)2

+

(

dg
dt

)2

+

(

dh
dt

)2

dt (2.13)

To be clear,L is the length of a virtual “piece of string” which exactly follows the curve between endpoints
given by t1 and t2 at points( f (t1),g(t1),h(t1)) and ( f (t2),g(t2),h(t2)), if the string was then “pulled out
straight”. The aboveL is not the straight-line distance between the endpoints which would be just|r(t2)−
r(t1)|. Equation 2.13 remains valid even if some or all of the derivatives cross zero, as long as none of them
become infinite or undefined. If our curve is in 2 dimensionsx,y we just setz = h(t) = 0 anddz/dt = 0.

Note: In problems, you may be given a parametric curve, and the endpoints specified in terms of
(x1,y1,z1) and(x2,y2,z2); in this case you will need to solve to find the values oft1 andt2 corresponding
to the endpoints, before doing the integral above. For each endpoint you can solve whichever of thex,y,z
equations is simplest to gett1,t2; then insert thoset1,t2 into the other two equations to check.

Example 2.1. The parametric curve C is given byx = t,y = t2,z = 2
3t3. Evaluate the arc-lengthL of the

curve between points (0,0,0) and(2,4, 16
3 ).

Answer: The end-points have valuest1 = 0 andt2 = 2 (solve thex equation fort, and check the other
two equations give the desired point); the derivatives aredx/dt = 1, dy/dt = 2t, dz/dt = 2t2. Therefore the
required length is

L =

∫ 2

t=0

√

1+(2t)2+(2t2)2 dt =

∫ 2

0

√

1+4t2+4t4 dt =

∫ 2

0
1+2t2 dt = [t + 2

3t3]20 = 22
3 .

Equation 2.13 can easily be simplified to give us the arc-length of a curve in implicit form: i.e. if we
are given a 2-dimensional curve given asy = g(x), we can just definef (t) = t so t = x, y = g(t) = g(x) and
z = h(t)≡ 0; inserting this gives us the arc-length for the curvey = g(x) between the endpoints at(x1,g(x1))
and(x2,g(x2)) as

L =

∫ x2

x1

√

1+

(

dy
dx

)2

dx (2.14)

Similarly, if we have a curve in 3 dimensions where any two of the coordinates are given as functions of
the other one, e.g.y = g(x),z = h(x), then we get

L =

∫ x2

x1

√

1+

(

dy
dx

)2

+

(

dz
dx

)2

dx . (2.15)

for L the arc-length between end-points atx1 andx2.
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(However, note that many common curves have arc-length integrals which are not soluble in elementary
functions; an ellipse is a well-known case where the circumference is not elementary, but is given by a
special function called anelliptic integral. But one-dimensional integrals are generally very fast to evaluate
accurately with a computer, since only one loop is needed).

2.2.1 Tangent vector to a curve

Given a parametric curve in either 2 or 3 dimensions, we can clearly differentiate each of the component
functions with respect tot ; assuming the functions are differentiable, this gives us anew vector

dr
dt

= lim
δ t→0

r(t + δ t)− r(t)
δ t

=

(

d f
dt

,
dg
dt

,
dh
dt

)

. (2.16)

It is easy to see that this vectordr/dt is locally parallel to the curve at the selected point, as long as all the
derivatives exist ; hence given a value oft = t0, we can evaluater0 = r(t0) (which is the position vector of a
point on the curve), and defineQ = dr/dt|t0 which is a vector of direction tangent to the curve at the same
point, soQ is a tangent vector to the parametric curve at the pointr0. Thus, we can construct an equation
for the tangent line

r = r0 + uQ , −∞ < u < ∞ (2.17)

for any realu; hereu is another parameter (giving position along the tangent line to our curve C atr0). If we
write this out in components, the above is three linear equations givingx,y,z as linear functions ofu, and if
desired we can rearrange those to give two linear equations for the tangent line: e.g. if we wanty andz in
terms ofx, we just rearrange thex equation to giveu in terms ofx, and substitute that into they,z equations.

Note: in the above, we must evaluater anddr/dt at the same point i.e. the same value oft, otherwise the
result will not make sense. Also, if you are given the coordinates ofr0 rather thant, you will have to find the
value oft which gives your(t) = r0; you can pick whichever coordinate is the simplest to solve.

(Warning: equation 2.16 looks a bit like the equation for∇ f which we met earlier. However, it’s actually
very different becausef (r) was a scalar function of three variablesx,y,z, while r(t) along a parametric curve
is a vector-valued function of one variablet. )

2.3 Curves in polar coordinates

As we saw in the previous section, it is sometimes convenientif we are working with circles, ellipses or other
closed curves to work inplane polar coordinates; here instead of the familiarx,y of Cartesian coordinates,
we can label any point P in a plane by its distancer from a fixed origin O, and an angleθ between the line
OP and the positivex−axis. By convention,θ is defined to increase “anticlockwise” (from+x towards+y)
so the positivey−axis hasθ = + π

2 , the negativex−axis hasθ = π , and the negativey−axis hasθ = 3π
2 .

The conversion from(r,θ ) to x,y is given by simple trigonometry:

x = rcosθ y = rsinθ , (2.18)

which is clearly unique. Rearranging these to giver,θ in terms ofx,y, we have

r = ±
√

x2 + y2 θ = arctan(y/x)+ (nπ) (2.19)

for some integern. Note however that the conversion from(x,y) to (r,θ ) is non-unique; one point in a plane
has a unique(x,y) pair, and a particular pair(r,θ ) map to a uniquex,y; but one point(x,y) can be represented
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by two possible values ofr (positive and negative) and an infinite number ofθ values differing by integer
multiples ofπ i.e. different numbers of half-turns around the origin. So the point(r,θ ) is actually the same
point as(−r, θ +(2n +1)π) and(+r, θ +2nπ).

In most cases of interest we will be taking the positive valueof r and we’ll takeθ to lie in the interval
[0,2π ], in which case the mapping is unique, but be aware of potential ambiguities with this.

Clearly one of the simplest curves in plane polar coordinates is

r = a (2.20)

wherea is a constant. Implicitly this also meansθ = any value, so this is clearly a circle, centred on the
origin, radiusa. Likewiseθ = b whereb is a constant is a straight line through the origin at angleb.

More generally we can define curves as
r = f (θ ) (2.21)

This is a convenient way to define certain types of curve; one example is

r = a + bθ (2.22)

which describes a spiral called anArchimedes spiral.

It is possible to express a straight line in polars, for example it is easy to show that the vertical linex = b
has the polar equationr = bsecθ . More generally for a line which has closest distanceb to the origin at angle
θ0, we getr = bsec(θ −θ0).

2.3.1 Conics in polar coordinates

A particularly useful family of curves in polar coordinatesis given by

r(θ ) =
ℓ

1+ ecosθ
(2.23)

wheree is called the eccentricity andℓ is the semi-latus rectum. It can be shown that this equation gives a
conic sectionas we met before with the quadratic functions inx,y. Heree = 0 gives a circle (with radius
ℓ), 0 < e < 1 gives an ellipse,e = 1 gives a parabola ande > 1 gives a hyperbola, so by choice ofe this
expression can give any of the above conics ; andℓ is just a scale factor giving the overall size.

Note: in the above representation Eq 2.23, the origin is onefocus of the conic, the origin is not the
centroid except ife = 0 (the circle). The form Eq. 2.23 is especially useful in astronomical orbit problems,
since it will turn out that orbits of planets and comets around a central star have a solution of this type with the
star at one focus (and nothing at the other focus). For ellipses, it is easy to show by plugging inθ = 0,π that
the semi-major axisa = ℓ/(1−e2). (Note we useℓ rather thana in the above definition sinceℓ is well-defined
for all of the conics).

For any point given by eq 2.23, the distance to the origin isr and the distanced to a vertical line atx = x0

is

d = x0− rcosθ =
x0 + x0ecosθ − ℓcosθ

1+ ecosθ
. (2.24)

If we choosex0 = k = ℓ/e , this reduces tod = r/e or r = ed, so our conic is the locus such that (distance
from focus) =e× distance from the linex = k, called thedirectrix ; this works for any of the ellipse, parabola
or hyperbola; though the directrix is “at infinity” for the circle e = 0.
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Altogether there are (at least) four possible ways of defining the conic sections: one is the “plane slicing
a cone” definition; the second is using the distances-from-foci properties; the third is via quadratic equations
in Cartesian coordinates, and the fourth is as above. (It takes some straightforward but fairly long algebra to
prove that all of these do actually end up with the same familyof curves, which we won’t repeat here (see
e.g. Thomas Chapter 10) ).

2.3.2 Arc length and area in plane polar coordinates

Given a curve in polar coordinates asr = f (θ ), we can get the arc length in two ways: firstly we can put this
into the parametric representation byx = f (θ )cosθ ,y = f (θ )sinθ whereθ is the parameter (which behaves
like t in the examples we saw before). If we differentiate the above, we have

dx
dθ

= − f (θ )sinθ +
d f
dθ

cosθ
dy
dθ

= f (θ )cosθ +
d f
dθ

sinθ (2.25)

Inserting these into equation 2.11 for the arc-length, we get

ds
dθ

=

√

( f (θ ))2 +

(

d f
dθ

)2

, (2.26)

therefore the arc-length of the curve defined byr = f (θ ) between endpoints given byθ = θ1 andθ = θ2 is

L =
∫ θ2

θ1

√

( f (θ ))2 +

(

d f
dθ

)2

dθ (2.27)

(We can get the same result geometrically by drawing a segment of a curve from(r,θ ) to (r+δ r,θ +δθ ),
also drawing the circular arc through(r,θ ), and applying Pythagoras’s theorem to the small triangle resulting).

Warning: the above is clearly different from Equation 2.14 which gavethe arc-length for the case
y = g(x); comparing them, the second term looks the same, but the firstterm above isf (θ )2 instead of 1.
The reason is that in polar coordinates, a small change of angle δθ shifts our point by a distancer δθ in the
“circumferential” (around-the-origin) direction,not just δθ . We will see a lot more of this sort of thing in
later sections where we deal with 3-dimensional polar coordinates.

2.3.3 Area in polar coordinates

If we are given a curver = f (θ ), it is straightforward to evaluate the area of the sector bounded by two
straight linesθ = a, θ = b and the curver = f (θ ) : by considering an interval from( f (θ0),θ0) to ( f (θ0 +
δθ ),θ0 + δθ ), if δθ is small this area approaches an isosceles triangle with long dimensionr = f (θ ) and
width r δθ , so the area is12r2δθ .

Thus, the area inside a curve defined in plane polar coordinates, between anglesθ1 ≤ θ ≤ θ2 is simply

A =
1
2

∫ θ2

θ1

[r(θ )]2 dθ . (2.28)

Warning: You need to beware of zero-crossings here: ifr(θ ) goes negative so the curve has several
“petals”, you need to be careful not to count the same petal twice at anglesπ apart. If this happens, it’s
advisable to sketch the curve, break the integral into suitable chunks wherer does not cross zero, and add
these up. Ifr is always non-negative, there are no problems.
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Example 2.2. An easy example is the circler = a: insertingθ1 = 0,θ2 = 2π for the endpoints (as
explained earlier) gives us

A = 1
2

∫ 2π

0
a2dθ = πa2. (2.29)

giving us the familiar formula for the area of a circle.

Example 2.3. Another example is thecardioid defined byr = a(1+ cosθ ); this curve has real-world
applications since many microphones and radio antennas have a directional response given by a cardioid
function. Inserting this into 2.28, and using the double-angle formula we easily get the area3

2πa2.

2.4 Surfaces in 3 dimensions

In the previous section we looked at parametric representations of a curve in 2 or 3 dimensions, generally
written as(x,y,z) = ( f (t),g(t),h(t)); there we had 2 or 3 functions (one per coordinate) ofoneparametert.

A further generalisation is to define asurface in 3-dimensional space; a plane is the simplest example,
but in general we will deal with curved surfaces. We will see that it requirestwo parameters to describe an
arbitrary surface, instead of the one parameter we had for a curve.

Now we’ll call the parametersu andv, and as before we need 3 functions of these to define the 3x,y,z
coordinates of our surface in 3-dimensional space, so we getaparametrised surfaceas

x = f (u,v), y = g(u,v), z = h(u,v) i.e. r = r(u,v) . (2.30)

If we pick a fixed value forv, sayv = v0, and allowu to vary, then we just have a one-dimensional curve
(on the surface) as we varyu. If we now choosev = v0 + ∆v and varyu again, we get another curve which
is “close” to the first one if the functions are continuous, and we have a “ribbon” of surface bounded by
the two curves. Repeating for lots ofv0’s we see that we sweep out a 2-dimensional surface (call it S)in
3-dimensional space, as long as the curves forv = v0 andv = v0 + ∆v don’t coincide. Technically we can
define the partial derivatives

∂ r
∂u

=

(

∂ f
∂u

,
∂g
∂u

,
∂h
∂u

)

,
∂ r
∂v

=

(

∂ f
∂v

,
∂g
∂v

,
∂h
∂v

)

(2.31)

and as long as these two vectors are not parallel at any point,our locus ofr(u,v) will in fact be a surface, not
a line. We can see that both of the above two vectors are directions tangent to the surface atr(u,v). We can
also take the vector product of these two,

N =
∂ r
∂u

× ∂ r
∂v

. (2.32)

This cross-productN will be non-zero if the two partial derivatives above are both non-zero and not parallel.
AssumingN is non-zero, it must be anormal vector to the surface S, because both the partial derivatives are
parallel to the tangent plane to our surface at the pointr(u,v), andN is perpendicular to both of them.

Thus, if we are given a surfacer(u,v), and given a point on the surface defined by values(u0,v0), we have
a clear procedure for finding the tangent plane to the surfaceat the corresponding point: we first evaluate the
point in the surfacer0 = r(u0,v0); next we evaluate the two partial derivatives at the same point, and take
their cross-productN as above; thus in the usual vector notation for a plane through a given point normal to
a given vector, the equation for the tangent plane is(r − r0).N = 0.
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(Note: if instead we are given a point in the surface by defining its (x,y,z) space coordinates, we will first
have to find the values of(u0,v0) which map onto that pointbefore we evaluate the partial derivatives; in
general that may not be simple to do, but it usually will be in the case of test questions.)

We can also use vectors to calculate the area of a parametric surface given byr(u,v): if we take the four
pointsr(u,v), r(u + du,v), r(u,v + dv), r(u + du,v + dv) , these define an infinitesimal parallelogram with
sides∂ r

∂u du and ∂ r
∂v dv; as we saw from the definition of the vector product in Chapter1, the areadA of this

parallelogram is

dA =

∣

∣

∣

∣

∂ r
∂u

× ∂ r
∂v

∣

∣

∣

∣

du dv (2.33)

Thus, integrating the above with respect to both ofu,v we get thesurface areaA of our parametric surface
as

A =
∫ ∫

D

∣

∣

∣

∣

∂ r
∂u

× ∂ r
∂v

∣

∣

∣

∣

du dv (2.34)

where the domainD of integration is the appropriate domain ofu,v. (Note: if the surface is described
geometrically, we will need to work out limits onu,v to cover the described surface).

In the special case where our surface is given asz = h(x,y), we can just substitutex = u, y = v into the
above: then the two partial derivative vectors become(1,0,∂h/∂x) and(0,1,∂h/∂y), and the surface area
becomes

A =

∫ ∫

D

√

(

∂h
∂x

)2

+

(

∂h
∂y

)2

+1 dx dy (2.35)

where the integral is over some given domain inx,y.

Example 2.4. A good example of the above is the area of a sphere: a parametrisation of a sphere in 2
parameters(θ ,φ) is

x = asinθ cosφ , y = asinθ sinφ , z = acosθ 0 < θ < π , 0 < φ < 2π (2.36)

(It is easy to show that this satisfiesx2 + y2 + z2 = a2, so any(x,y,z) above does lie on the sphere. I’ll state
without proof that the limits given above define a unique mapping from a point on the sphere toθ ,φ . We will
meet this again later when we come to spherical polar coordinates).

Given this, evaluating the partial derivatives, we have∂ r/∂θ = (acosθ cosφ ,acosθ sinφ ,asinθ ), and
∂ r/∂φ = (−asinθ sinφ ,asinθ cosφ ,0). The cross product of these vectors is
N = (a2sin2 θ cosφ ,a2 sin2 θ sinφ ,a2sinθ cosθ ) which is asinθ r , and has magnitudea2sinθ . Then our
surface areaA of the sphere becomes

A =

∫ 2π

0

(

∫ π

0
a2sinθ dθ

)

dφ

=

∫ 2π

0
[−a2cosθ ]π0 dφ

=

∫ 2π

0
2a2 dφ

= 4πa2 .

2.4.1 Parametric forms of common surfaces

To conclude this chapter, I’ll give some specific examples ofparametric forms for common surfaces. These
will turn out to be useful later, when we come to evaluate integrals over specified 2D surfaces in 3D space:
the parametric form is usually the easiest way to do this.
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A plane in 3D can be expressed in parametric form as

r(u,v) = r0 + ua+ vb

wherer0 is a point in the plane, anda, b are any two vectors parallel to the plane. Here if we take−∞ <
u,v < ∞ we get the whole infinite plane.

If we want a finite parallelogram with one corner atr0 and two adjacent sidesa, b, we can simply put
limits 0≤ u ≤ 1, 0≤ v ≤ 1 in the above. (A rectangle is a special case of this).

Finally, I’ll repeat the parametric forms for a cylinder, sphere, ellipsoid and hyperboloid which we met
briefly in Chapter 1.

Implicit form Parametric form

Cylinder x2 + y2 = a2 (x, y, z) = (acosθ , asinθ , z) Parametersθ ,z (2.37)

Sphere x2 + y2+ z2 = a2 (asinθ cosφ , asinθ sinφ , acosθ ) Parametersθ , φ (2.38)

Ellipsoid
x2

a2 +
y2

b2 +
z2

c2 = +1 (asinθ cosφ , bsinθ sinφ , ccosθ ) Parametersθ , φ (2.39)

Hyperboloid
x2

a2 +
y2

b2 −
z2

c2 = 1 (acosu, bsinucoshv, csinusinhv) Parametersu,v (2.40)

In the above, the choice of the names for the two parameters isslightly arbitrary, but follows common
conventions.

It is easy to show that each parametric form above satisfies the implicit-form equation, just by substituting
and using sin2 A + cos2 A = 1 or cosh2 A− sinh2 A = 1. It’s not so obvious to see how to go the other way;
but the parametric form for the sphere falls out naturally when we come to spherical polar coordinates; the
ellipsoid is a simple “stretch” of the sphere; and the hyperboloid comes from replacing sin with sinh etc in
the ellipsoid.
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