Chapter 2

Curves, Lengths, Surfaces and Areas

Last revised 13 Oct 2010.

This chapter gives an overview of various methods for degugicurves in 2-dimensional and 3-dimensional
space, including parametrised curves, curves in polardinates, and some vector notation.

We then move on to formulae involving integration for the-Bogth of curves in each of these cases,
and for the area enclosed by curves in 2-dimensional polardicates.

Finally we extend this to defining parametrised surfaces @in3ensions (using 2 parameters), and the
areas of these surfaces.

2.1 Parametrised curves

2.1.1 Parametrised curves: definition

(See Thomas 3.5)

By now you are familiar with expressing a curve on a 2-dimenal plane in Cartesian coordinaiesy)
as
y="F(x); (2.1)

where f(x) is a given function, and may be any combination of polynosjisigonometric functions, ex-
ponential functions (called “elementary functions”), ooma complicated functions. This form for a curve
is called “explicit form” since a giveri specifies exactly how to calculaydfor any value ofx. Clearly for

a given functionf (x) we can draw a graph of this function by taking many values with suitably small
steps, evaluating(x) at each of these so we have a “dot'(&ty = f(x)) and then “joining the dots”. If is

a continuous function, then there are no “gaps” in this curve

This is straightforward, but we have the limitation that &achx the curve has a unique value p{the
converse is not true, i.e. choosing a particular vajgiéor y and solving the equatiof(x) = yp may give
none, one or many solutions known as “roots” #r So, a curve such as= f(x) can have “wiggles” in the
y-direction but not in the x-direction.
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In a few special cases we can have multiple valuey fiira giverx, e.g. for the familar case of the circle
x? +y? = a® we can writey = +v/a2 — x2, and the+t term gives 2, 1 or 0 solutions fgrdepending whether
|x| < a, x=a, or|x| > |a| respectively ; but this quickly becomes excessively coogpéid for more general
curves.

A second way to represent a curve in a plane is as the set obmltgpsatisfying an equation such as
f(x,y) =0 or f(x,y) = ¢, wherec is a constant; heré depends on botk andy and may not be separable;
this is called “implicit form”. This has some advantages wi# gee later, for example choosing different
values ofc can give us a “family” of different curves from one functidnhowever, a clear disadvantage is
that there is no easy way (in general) to calcujedita giverx = Xg; so sketching the curve (or programming a
computer to sketch it) can be cumbersome, unless we cannisedfe form of the solution from experience.

A third way to represent a curve in a 2-dimensional plane gparametrisation: now we defingwo
arbitrary functionsf (t),g(t) of a new real variable, and we define our curve call&las the set of all points
where

x=1f(t), y=9(t) hence (xy)=(f(t)9(t)) (2.2)
for any value ot in a givendomain (which may be finite or infinite). Here we call C tiparametric curve,
t is the parameter, andx = f(t),y = g(t) are theparametric equations for the curve. These equations
together with the defined domain bfconstitute a complete definition called tharametrisation of the
curve.

Given the above, it is clear that any valuetahaps to a single point in thgqy) plane; it is also fairly
obvious that if the function§, g are both continuous, then the resulting curve C is also nantis. (To prove
this, pick a valuég giving a point on the curvey, yp; then draw a tiny circle radiud aroundxg, yo. If f,g
are both continuous we can find some rangebt for which the curve is contained inside the above circle,
i.e. the curve has no “gaps”; if there were a finite gap in thweLthen eithef or g must not be continuous,
contradicting our assumption).

Using parametric form, we can express more complicatedesusuch as figure-eights, spirals and so
on which can self-intersect and/or cross a gixaralue many times (including infinitely many), and we can
“sketch the curve” by hand or by computer by just evaluafifig, g(t) at a sufficient number of points spaced
int and “joining the dots”.

Note that heré is not necessarily “time’t is just a “label” so that each point on the curve is “labelled”
with one value ot, or multiple values if the curve crosses itself at that point

Clearly if we are given a curve= g(x), we can put that into parametric form by simply definif{g) =t
in the above, so then=t andy = g(t) = g(x); but the converse generally is not true, so the parametni fo
is more general.

Now for a few simple examples: a very simple example is agititdine, which is given by

X=X+ at, y=VYo+bt ; (2.3)

and the domain-o <t < . Here it is easy to see that this parametrises a straightplssing through
the point(Xo, Yo) with direction vector(a, b) and slopeb/a. (If a # 0, we can rearrange the-equation to
t = (x—Xp)/a, and then substitute that into thie equation to gey = yp+ (b/a) (X — xo).)

Note that many possible choicesx@fyp, a, b lead to the same straight line, only the mapping ftoonto
points on the line will change. If we want a line throu@, yo) and(xy,y1) then we se= x; — xp, b=
y1 — Yo in the above, and if we want our “curve” to be a finite straighelsegment with endpointso, yo)
and(x1,y1), then we just specify that the domaintds 0 <t < 1 above.

Another simple case is given by
Xx=acod,y=asint ;
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it is clear that this obey®® +y? = &, so the curveC is a circle of radiusa centred at the origin. Since the
functions sin and cos are both periodic with period addingn x 2rirtot (for any integemn) gets back to the
samex,y. So if we lett run from —oo to +oo, the resulting curve loops around the circle an infinite nendf
times. So, in this case it is more convenient to specify agfiddmain fort, such as G t < 2, so over that
range the curve goes round the circle exactly once. (Hereamechoose any interval of lengthi2so e.g.
—rn <t < mmworks just as well).

We can generalise this to an ellipsesby acost,y = bsint; this is just a circle stretched by a factopfa
in they—direction, so the semi-axes a@ndb respectively. We can get an ellipse with mid-pointat o)
with by x = X + acod,y = yp + bsint.

The above illustrates a convenient property: because ifvesvlone parametric curve, we can produce a
shifted copy of it just by addingy andyp to the two functions; or we can stretch or squash it along Kes a
by multiplying our two functions by constants.

2.1.2 The cycloid

Another example of a curve which is easy to represent in patdnform is thecycloid, which can be
expressed as
x=a(t—sint), y=a(l-cog) (2.4)

If we didn’t have theat term in thex—equation above, it is easy to see this would be a circle ofissdientred

at (0,a); but the additionast term makes the circle’s centre “roll along” in tixairection ag increases. It
turns out that the above curve is the curve traced out by ample) a pebble stuck to a bicycle’s tyre as the
tyre rolls along the ground without slipping, so we get a caration of the “axle” going along at constant
rate and the pebble going in a circle round the moving axléhénexample above we have chosen things so
the “ground” is the x-axis, the axle goes along the kne a and the point is at the origin &&= 0.

This curve has applications in several real-world problegnsl you can see above that it is quite simple to
write in parametric form, but it is complicated in Cartes@ordinates (there is an expression in elementary
functions forx in terms ofy, but not the other way round).

There are generalised versions of this curve called theyelpicl and hypocycloid which are traced by a
point on one circle rolling around a second circle (instebalong a straight line), and furthermore there are
versions where the “point” is not on the circumference ofrbléng circle; these are calletlochoids. (You
won'’t be expected to memorise these, but you might be givertiuations as part of an exam question so it
is worth knowing the general concept).

2.1.3 Lissajous figures

A curve parametrised by= acoskit, y=bsinkst whereks, k, are constants (usually integers), is called a
Lissajous figure By considering what happenstagries, we can see that botlandy oscillate betweer-a
and=b, so the curve must always lie inside a rectangle with coragr&a, £b); but now the curve oscillates
at different rates in th&, y directions, and it can cross itself many times. If we chdqase 1,k, = 2 it will

turn out that we get a figure-of-eight. kf /k» is a simple fraction, it will turn out that the curve closesha
on itself after a finite number of “wiggles” ; but K, /k; is irrational it can be shown that the curve gets
arbitrarily close to every point in the above rectangle berter returns to exactly the same place; this sort of
thing may be seen in some computer screensavers, where yeahaon wandering around the rectangular
computer screen and it’s helpful for the pattern not to réfiealf.
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2.1.4 Parametric curves in 3 dimensions

We can easily extend the above parametric curves from 2 ton&mbions by defining a third functidnit)
for the z—coordinate, so that

x=f(t), y=g(t), z=h(t). (2.5)

Clearly for each value dfwe now get a pointin 3-dimensional space, and the set of pi(tt), g(t), h(t))
defines a 1-dimensional curve which is continuous, i, h are all continuous; the basic principles are the
same as in 2 dimensions.

A good example of this is thieelix, where
X=acog, y=asint, z="ht (2.6)

wherea, b are constants. Here aigaries, the distance of the curve from the z-axig/i€? + y2 = a (constant),

so the curve projected onto tRegy plane is a circle, but the z-value is increasing at a unifata,rso we get a
curve in 3 dimensions looking like the handrail of a spiraistase winding around theaxis. Each increase
of 2rrin t gives us one full “twist” around the—axis.

Note: In everyday English, this may be called a spiral: however &ihm terminology, the term spiral refers
to various types of 2-dimensional plane curve, while a 3atisional curve as described above is properly
called a helix).

Parametric curves may be expressed more compactly in vectation as = r(t), but of course we still
need to define the 3 functions for the 3 independent compsiéntso this doesn’t change any of the results,
it just makes the expressions more compact.

As an example, the parametric representation also makesté gasy to express curves which aren’t
symmetric about thg,y, z axes: for example, if we choose any two fixed orthogonal usitersu, v, we can
construct an ellipse with centroid et semi-major axisa and semi-minor axib respectively parallel to the
two vectorsu, v, by:

r(t) =c+ (acos)u+ (bsint)v ; (2.7)

we can of course plug in the components to wrig,z in terms oft, but then it will be a lot less clear
geometrically.

2.2 Arc Length of a curve

Here we show how to calculate the arc-length of a curve betwge given endpoints.

If we choose a point on the curvét), and a neighbouring poim{t + dt), then the vector difference of

these is q
r
r(t+ot) —r(t) maét ; (2.8)
this is the vector separation between the two nearby pomts@curve. Taking limits wherét tends to zero,
and assuming that the derivative exists, the curve tends tofmitesimal straight line segment, so we can

define the infinitesimakngth dsto be the modulus of the left-hand side above,

ds=|r(t+dt)—r(t)| = ‘% dt (2.9)
_|/df dg dh
(5994 210
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Therefore, we have

ds df\? /dg\? /[dh\?

@ V (&) + (&) (&) @10
ds dx\? /dy\? [dz\?

o Wa) (&) (%) 212

(This is effectively just Pythagoras’s theorem appliedridrdinitesimal segment of the curve, which has the
same length as a straight line joining its endpoints).

So, now we can define tharc length L of the parametric curve between two valugd, by integrating

the above, giving us
2 [/df\% [dg\? [dh\?
- M) () (0w 213

To be clearl. is the length of a virtual “piece of string” which exactly falvs the curve between endpoints
given byt; andt, at points(f(t1),g(t1),h(t1)) and (f(t2),9(t2),h(t2)), if the string was then “pulled out
straight”. The abové is not the straight-line distance between the endpoints whichldvbe just|r (t2) —
r(t1)|. Equation 2.13 remains valid even if some or all of the dérres cross zero, as long as none of them
become infinite or undefined. If our curve is in 2 dimensignswe just sez= h(t) = 0 anddz/dt = 0.

Note: In problems, you may be given a parametric curve, and the @ntipspecified in terms of
(x1,¥1,21) and(x2,¥2,2); in this case you will need to solve to find the valueg;0éndt, corresponding
to the endpoints, before doing the integral above. For eadpa@nt you can solve whichever of tixey,z
equations is simplest to gitty; then insert thosg, t; into the other two equations to check.

Example 2.1. The parametric curve C is given by=t,y =t2,z= §t3. Evaluate the arc-lengthof the
curve between points (0,0,0) a(@l 4, 18).

Answer: The end-points have valugs= 0 andt, = 2 (solve thex equation fort, and check the other

two equations give the desired point); the derivativesthy@t = 1, dy/dt = 2t, dz/dt = 2t%. Therefore the
required length is

2 2 2
L= \/1+(2t)2+(2tz)2dt:/ \/1+4t2+4t4dt:/ 14 22dt = [t + 233 = 22
t=0 0 0

Equation 2.13 can easily be simplified to give us the arctlenda curve in implicit form: i.e. if we
are given a 2-dimensional curve givenyas g(x), we can just definé(t) =t sot = x, y = g(t) = g(x) and
z=h(t) = 0; inserting this gives us the arc-length for the cuyve g(x) between the endpoints @t;,g(x1))

and(xz,9(x2)) as
X2 2
L:/ \J1+ <g—i) dx (2.14)

Similarly, if we have a curve in 3 dimensions where any twoha& toordinates are given as functions of
the other one, e.g: = g(x),z= h(x), then we get

%o 2 2
L (@) (E) e 219

for L the arc-length between end-pointxatandx,.
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(However, note that many common curves have arc-lengtigiake which are not soluble in elementary
functions; an ellipse is a well-known case where the cirarerice is not elementary, but is given by a
special function called adliptic integral. But one-dimensional integrals are generally very fasvadueate
accurately with a computer, since only one loop is needed).

2.2.1 Tangent vector to a curve

Given a parametric curve in either 2 or 3 dimensions, we caarby differentiate each of the component
functions with respect tb; assuming the functions are differentiable, this gives new vector

da . rt+aot)—r(t) <df dg dh>

||m - = = a,a,a

dt oo ot (2.16)

It is easy to see that this vectdr/dt is locally parallel to the curve at the selected point, agilasa all the
derivatives exist ; hence given a valuetef tp, we can evaluatey = r(tp) (which is the position vector of a
point on the curve), and defir@ = dr /dt|, which is a vector of direction tangent to the curve at the same
point, soQ is atangent vectorto the parametric curve at the point Thus, we can construct an equation
for thetangent line

r=ro+uQ , —oolU<o (2.17)

for any realu; hereu is another parameter (giving position along the tangesettour curve C atp). If we
write this out in components, the above is three linear equatgivingx,y,z as linear functions ofi, and if
desired we can rearrange those to give two linear equatmrthé tangent line: e.g. if we wagtandzin
terms ofx, we just rearrange threequation to givel in terms ofx, and substitute that into thez equations.

Note: in the above, we must evaluat@anddr /dt at the same pointi.e. the same value,aftherwise the
result will not make sense. Also, if you are given the cooatis ofr g rather thart, you will have to find the
value oft which gives you (t) = ro; you can pick whichever coordinate is the simplest to solve.

(Warning: equation 2.16 looks a bit like the equation fof which we met earlier. However, it's actually
very different becausé(r) was a scalar function of three variabley, z, whiler (t) along a parametric curve
is a vector-valued function of one varialile)

2.3 Curves in polar coordinates

As we saw in the previous section, it is sometimes conveiifierg are working with circles, ellipses or other
closed curves to work iplane polar coordinates here instead of the familiag y of Cartesian coordinates,
we can label any point P in a plane by its distandeom a fixed origin O, and an ang between the line
OP and the positive—axis. By convention@ is defined to increase “anticlockwise” (frosx towards+y)
so the positivg/—axis has® = +7, the negative—axis hasd = 11, and the negativg—axis hasd = 37"

The conversion frongr, 8) to x,y is given by simple trigonometry:
X =rcosf y=rsinf | (2.18)
which is clearly unique. Rearranging these to givin terms ofx,y, we have
r=+vx+y2 6 =arctanfy/x) + (nm) (2.19)

for some integen. Note however that the conversion frdmy) to (r, 8) is non-unique; one point in a plane
has a uniquéx, y) pair, and a particular pair, ) map to a unique,y; but one pointx,y) can be represented
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by two possible values of (positive and negative) and an infinite numberGo¥alues differing by integer
multiples ofri.e. different numbers of half-turns around the origin. Be point(r, ) is actually the same
pointas(—r, 8 + (2n+ 1)) and(+r, 8 + 2nm).

In most cases of interest we will be taking the positive vaitie and we’ll take® to lie in the interval
[0,271], in which case the mapping is unique, but be aware of potemtisiguities with this.

Clearly one of the simplest curves in plane polar coordimate
r=a (2.20)

wherea is a constant. Implicitly this also meafis= any value, so this is clearly a circle, centred on the
origin, radiusa. Likewise 8 = b whereb is a constant is a straight line through the origin at amgle

More generally we can define curves as
r=1(0) (2.21)

This is a convenient way to define certain types of curve; caenple is
r=a+hé (2.22)
which describes a spiral called anchimedes spiral.

It is possible to express a straight line in polars, for exknitps easy to show that the vertical lie= b
has the polar equatian= bsedd. More generally for a line which has closest distahd¢e the origin at angle
6o, we getr = bsec8 — 6).

2.3.1 Conics in polar coordinates

A particularly useful family of curves in polar coordinatieggiven by

1

re)=———— 2.23
(6) 1+ ecosb ( )
wheree is called the eccentricity anflis the semi-latus rectum. It can be shown that this equatiesag
conic sectionas we met before with the quadratic functionxiy. Heree = 0 gives a circle (with radius
0), 0< e< 1 gives an ellipsee = 1 gives a parabola anel> 1 gives a hyperbola, so by choice ethis

expression can give any of the above conics ; @isjust a scale factor giving the overall size.

Note: in the above representation Eq 2.23, the origin is fowes of the conic, the origin is not the
centroid except it = 0 (the circle). The form Eq. 2.23 is especially useful in @astmical orbit problems,
since it will turn out that orbits of planets and comets aiarcentral star have a solution of this type with the
star at one focus (and nothing at the other focus). For eltipis is easy to show by plugging éh= 0, it that
the semi-major axia=¢/(1— €?). (Note we usé rather tharain the above definition sinagis well-defined
for all of the conics).

For any point given by eq 2.23, the distance to the origindad the distancd to a vertical line ak = xg
is
Xo + Xpecosf — £ coso
1+ecosd
If we choosexg = k= ¢/e, this reduces tal =r/eorr = ed, so our conic is the locus such that (distance

from focus) =ex distance from the lin& =k, called thedirectrix ; this works for any of the ellipse, parabola
or hyperbola; though the directrix is “at infinity” for thercle e= 0.

d=xy—rcosf = (2.24)
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Altogether there are (at least) four possible ways of defjive conic sections: one is the “plane slicing
a cone” definition; the second is using the distances-froangroperties; the third is via quadratic equations
in Cartesian coordinates, and the fourth is as above. (#stakme straightforward but fairly long algebra to
prove that all of these do actually end up with the same faufilgurves, which we won’t repeat here (see
e.g. Thomas Chapter 10) ).

2.3.2 Arc length and area in plane polar coordinates

Given a curve in polar coordinatesias- f(0), we can get the arc length in two ways: firstly we can put this
into the parametric representationky f(6)coso,y = f(6)sin@ wheref is the parameter (which behaves
like t in the examples we saw before). If we differentiate the apaechave

dx df dy df
Fri —f(08)sin6+ @cose d0 = f(8)coso + 90 sinf (2.25)
Inserting these into equation 2.11 for the arc-length, we ge
o _ [y (4 (2.26)
de de /) ~’ '

therefore the arc-length of the curve definedrby f (6) between endpoints given /= 6; and6 = 6, is

2
\/ —) do (2.27)

(We can get the same result geometrically by drawing a segofi@curve from(r, 6) to (r 4+ dr, 6 + 86),
also drawing the circular arc through 6), and applying Pythagoras’s theorem to the small trianglelteg).

Warning: the above is clearly different from Equation 2.14 which g#ve arc-length for the case
y = g(x); comparing them, the second term looks the same, but thedirst above isf (8)? instead of 1.
The reason is that in polar coordinates, a small change déatyshifts our point by a distanaad6 in the
“circumferential” (around-the-origin) directiomot just 6. We will see a lot more of this sort of thing in
later sections where we deal with 3-dimensional polar civaites.

2.3.3 Areain polar coordinates

If we are given a curve = f(8), it is straightforward to evaluate the area of the sectomigedl by two
straight linesd = a, 6 = b and the curve = f(6) : by considering an interval frortif (8y), 6) to (f (60 +
00),60+ 60), if 66 is small this area approaches an isosceles triangle with demensiorr = f(6) and
widthr 56, so the area igr26.

Thus, the area inside a curve defined in plane polar coorinbetween anglé < 0 < 6, is simply

1 r6

=3/ r(8)?de . (2.28)

Warning: You need to beware of zero-crossings herer(#) goes negative so the curve has several
“petals”, you need to be careful not to count the same petaletat anglest apart. If this happens, it's
advisable to sketch the curve, break the integral into bldétahunks where does not cross zero, and add
these up. It is always non-negative, there are no problems.
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Example 2.2. An easy example is the circle= a: inserting 6, = 0,6, = 2t for the endpoints (as
explained earlier) gives us

2
A= %/O a2d0 = 2. (2.29)

giving us the familiar formula for the area of a circle.

Example 2.3. Another example is theardioid defined byr = a(1+ cos8); this curve has real-world
applications since many microphones and radio antennas dalirectional response given by a cardioid
function. Inserting this into 2.28, and using the doublglafiormula we easily get the aregarraz.

2.4 Surfaces in 3 dimensions

In the previous section we looked at parametric representabf a curve in 2 or 3 dimensions, generally
written as(x,y,z) = (f(t),g(t),h(t)); there we had 2 or 3 functions (one per coordinate)rmé parametet.

A further generalisation is to definesairfacein 3-dimensional space; a plane is the simplest example,
but in general we will deal with curved surfaces. We will skattit requireswo parameters to describe an
arbitrary surface, instead of the one parameter we had fanaec

Now we’ll call the parametera andv, and as before we need 3 functions of these to define thg 3
coordinates of our surface in 3-dimensional space, so wa ga&tametrised surfaceas

x=f(u,v), y=9(uv), z=h(u,v) ie r=r(uyv). (2.30)

If we pick a fixed value fow, sayv = v, and allowu to vary, then we just have a one-dimensional curve
(on the surface) as we vaty If we now choose& = vp+ Av and varyu again, we get another curve which
is “close” to the first one if the functions are continuousd ame have a “ribbon” of surface bounded by
the two curves. Repeating for lots @f's we see that we sweep out a 2-dimensional surface (calliit S)
3-dimensional space, as long as the curves/fervy andv = vp + Av don’t coincide. Technically we can
define the partial derivatives

or _ (91 9g oh\  or _ (9t 9g oh 2.31)
du \du'du'du)’ ov  \dv' ov’ v '
and as long as these two vectors are not parallel at any peintpcus ofr (u, v) will in fact be a surface, not
a line. We can see that both of the above two vectors are girectangent to the surfacerdu,v). We can
also take the vector product of these two,

_ﬁr or

N=350" av

(2.32)

This cross-produdtl will be non-zero if the two partial derivatives above aretbnbn-zero and not parallel.
AssumingN is non-zero, it must be mormal vector to the surface S, because both the partial derivatives are
parallel to the tangent plane to our surface at the pdimtv), andN is perpendicular to both of them.

Thus, if we are given a surfacgu, v), and given a point on the surface defined by valwesv), we have
a clear procedure for finding the tangent plane to the sudati®e corresponding point: we first evaluate the
point in the surfaceg = r(up,Vp); next we evaluate the two partial derivatives at the samatpand take
their cross-produdil as above; thus in the usual vector notation for a plane thr@ugjven point normal to
a given vector, the equation for the tangent plan@ isrg).N = 0.
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(Note: if instead we are given a point in the surface by defjria (x,y,z) space coordinates, we will first
have to find the values diup, Vo) which map onto that poirttefore we evaluate the partial derivatives; in
general that may not be simple to do, but it usually will behia tase of test questions.)

We can also use vectors to calculate the area of a parametféce given by (u,v): if we take the four
pointsr(u,v), r(u+du,v), r(u,v+dv), r(u+du,v+dv) , these define an infinitesimal parallelogram with
sides%du and %dv; as we saw from the definition of the vector product in Chafitethe arealA of this

parallelogram is
or or

au " av
Thus, integrating the above with respect to botluafwe get thesurface areaA of our parametric surface

) /]

where the domaiD of integration is the appropriate domain ofv. (Note: if the surface is described
geometrically, we will need to work out limits amv to cover the described surface).

dA= ‘ ‘ dudv (2.33)

or or
% X 0_\/ dudv (234)

In the special case where our surface is giver ash(x,y), we can just substitute= u, y = v into the
above: then the two partial derivative vectors becqh®, dh/dx) and(0,1,dh/dy), and the surface area

becomes
an\?2 [/oh\?
A_//D\/<&) +<W> +1dxdy (2.35)

where the integral is over some given domairjm.

Example 2.4. A good example of the above is the area of a sphere: a paraatéir of a sphere in 2
parameterg$0, @) is

Xx=asinfcosp, y=asinfsing, z=acosf O<O<m0<@<22n (2.36)

(It is easy to show that this satisfig§+y? + 22 = a2, so any(x,y,z) above does lie on the sphere. I'll state
without proof that the limits given above define a unique niagfrom a point on the sphere th ¢. We will
meet this again later when we come to spherical polar coates).

Given this, evaluating the partial derivatives, we hdvéd 8 = (acosf cosp,acosf sing,asing), and
dr /0@ = (—asin@sing,asin@cosy,0). The cross product of these vectors is
N = (a2sir? 0 cosp, a?sin? 8sing, asinf cosh) which is asinfr, and has magnitude?sind. Then our

surface ared of the sphere becomes
2n s
/ (/ a2sin@ d9> do
0 0

2m
/0 [—a?cosh) T dp

A

2
2a% do
0

= 4ma®

2.4.1 Parametric forms of common surfaces

To conclude this chapter, I'll give some specific exampleparimetric forms for common surfaces. These
will turn out to be useful later, when we come to evaluategraés over specified 2D surfaces in 3D space:
the parametric form is usually the easiest way to do this.
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A plane in 3D can be expressed in parametric form as
r(u,v) =ro+ua+vb

whererg is a point in the plane, anal b are any two vectors parallel to the plane. Here if we take <
u,v < o we get the whole infinite plane.

If we want a finite parallelogram with one cornerrgtand two adjacent sides b, we can simply put
limits0<u<1,0<v<1inthe above. (A rectangle is a special case of this).

Finally, I'll repeat the parametric forms for a cylinder,tere, ellipsoid and hyperboloid which we met
briefly in Chapter 1.

Implicit form Parametric form
Cylinder X4y =a? (x,y, 2) = (acosf, asinb, 2) Parameter§, z (2.37)
Sphere X +y?+7Z=a’ (asinfcosp, asin@sing, acosd)  Parameter, ¢ (2.38)
2 2
Ellipsoid % + é + 2= +1 (asinBcosgy, bsinBsing, ccosl) Parametere, ¢ (2.39)
. Xy 7 . N
Hyperboloid P + Ra 1 (acosu, bsinucoshy, csinusinhv) Parameters,v (2.40)

In the above, the choice of the names for the two parametedfgistly arbitrary, but follows common
conventions.

Itis easy to show that each parametric form above satisfeeisitplicit-form equation, just by substituting
and using sifA+ co$A = 1 or cosBA—sinf? A = 1. It's not so obvious to see how to go the other way;
but the parametric form for the sphere falls out naturallyewlve come to spherical polar coordinates; the
ellipsoid is a simple “stretch” of the sphere; and the hypéstdl comes from replacing sin with sinh etc in
the ellipsoid.
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