<u>MST121 – 2001 Solutions</u>

*** qns. 5 & 6 no longer in syllabus

Qn.1 (a) 4.2, 0.84, 0.168, 0.0336 (b) Geometric Sequence

$$x_n = 21(0.2)^{n-1} \text{ n}=1,2,3...$$

(c) it tends to zero from above.

Qn.2 (a)
$$y = -2x + 22$$

- (b) 9.12
- (c) $(5\frac{1}{2}, 2\frac{3}{4})$

Qn.3 (a) $(x+2)^2+(y+3)^2=25$ radius=5, centre is

- (b) Solve $x^2+4x-12=0 \rightarrow (x-2)(x+6)=0$ so points are (2,0) and (-6,0)
- (c) Answer to (b) eliminates all but B and C. Since centre (-2,-3) is in third quadrant, B must be the correct diagram.

 $\mathbf{Qn.4}$ (a) f(x) is straight line with negative gradient joining (0,3) and (11/2,0)

- g(x) is sine curve starting at y=4, initially turning downwards, and oscillating between 2 and 6.
- (b) (i) f is one-to-one and so has an inverse. g is not one-to-one since its values repeat for every increase of \mathcal{I} in x and so has no inverse.

(b) (ii)
$$f^{-1}: \mathfrak{R} \to \mathfrak{R}$$

 $x \mapsto \frac{1}{2}(3-x)$

(n.b. formal function definition no longer in syllabus)

Qn.5 (a) 1,2,3,4,6,7 (b) gtst=2.1, least=1.9

Qn.6 (a) (i)
$$\frac{x+4}{\sin(\pi/2-x)}$$

not valid for x= odd multiples of $\pi/2$ because denominator is zero.

m1 m2 mem3

x x+4

$$x + 4 (\pi/2 - x)$$

x x+4
$$\sin(\pi/2 - x)$$

$$x \quad x+4 \sin(\pi/2 - x) \frac{\sin(\pi/2 - x)}{x+4}$$

(b) change last line to

memfour:=memtwo / memthree

Qn.7 (a) Sums are 3 . $\frac{1}{2}$. 4(5) and 3. 1/2. 20(21) which equal 30 and 630, so

$$\sum_{i=5}^{20} (3i-2) = \sum_{i=5}^{20} 3i - \sum_{i=5}^{20} 2i$$
= 630 - 30 - 16x2 = 568

(b) When n is large

$$\frac{6n+4}{2-3n} \to \frac{6n}{-3n} \to -2$$
and
$$\frac{6n+4}{2-3n^2} \to \frac{6n}{-3n^2} \to \frac{6}{-3n} \to 0$$

Qn.8 (a)
$$5x + 2y = 8$$

$$4x - 3y = 11$$

(b) det(M) = 5(-3)-(4.2) = -23

so
$$M^{-1} = \begin{pmatrix} 3/2 & 2/3 \\ 4/2 & -5/23 \end{pmatrix}$$

soln. =
$$M^{-1} \begin{pmatrix} 8 \\ 11 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

Qn.9 (a) $21t^2 - 2 \exp(-2t)$ sum and const. mult. rules

(h) $\frac{1}{5}\sin(5x) + 2x\sqrt{x} + c$

sum and const. mult. rules

Qn.10 (a)
$$\frac{ds}{dx} = -\frac{1000\sqrt{3}}{x^2} + x\sqrt{3}$$

$$\frac{d^2s}{dx^2} = \frac{2000\sqrt{3}}{x^3} + \sqrt{3}$$

$$\frac{ds}{dx} = 0$$
 when $x^3 = 1000$, i.e. $x=10$

$$\frac{d^2s}{dx^2} > 0$$
 when x=10 therefore min.

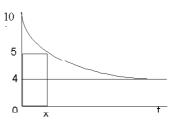
- (b) when $x=10 s = 150\sqrt{3}$
- (c) $vol = 250 = \frac{1}{4}\sqrt{3}(100)y \Rightarrow y = \frac{10\sqrt{3}}{3}$

Qn.11 (a) Use $2as - v^2 = 2as_0 - v_0^2$

 $2.a.80 = -576 \Rightarrow a = -3.6$, that is deceleration is 3.6 m/sec^2 .

- (b) Use $v=at+v_0$
- $24 = 3.6\iota \implies \iota = 6\frac{3}{2}\sec \iota$

Qn.12 (a) with P axis in units of 1000:



- (b) A=4000, B=6000
- (c) $5000=4000+6000.\exp(-0.05t)$ ln(1/6)=-0.05t

t=ln(6)/0.05 = 35.8 yrs.

Qn.13 (a) Sketch is like a Normal curve but skewed slightly to the right.

(b) reqd. proportion is proportion of area under curve to right of vertical line through wt.=100

(c) Conf. Int.: limits are
$$73.8 \pm 1.96 \times \frac{14.1}{8}$$
, i.e. $(70.3,77.3)$

Qn.14 (a) mean 28,median:24, LQ :15 UQ :34, Range:70, IQR : 19

(c) Right skewed because median < mean.

Qn.15 Accept H_0 , i.e. there is no reason to believe that there is any significant difference between the diets with regard to their effect on weight loss.

Qn.16 (a)
$$\ln y - \ln x^{0.408} = 2.82$$

 $\frac{y}{x^{0.408}} = e^{2.82} = 16.8$ so $k=16.8$, $b=0.408$
and eqn .is $y=16.8x^{0.408}$
(b) $16.8(500^{0.408}) = 212$

Qn.17 2001 (a) (i) Solve
$$-22 = 4r + d$$

 $-35 = -22r + d$
to give $r = \frac{1}{2}$, $d = -24$
 $x_n = \frac{1}{2}x_{n-1} - 24$ $x_1 = 4$ $(n = 2,3,...)$
(ii) $x_n = 52(\frac{1}{2})^{n-1} - 48$ $(n = 1,2,3,...)$ In the long term the sequence tends to -48 .

(b) (i) $y=2(x-1)+15 \Rightarrow y=2x+13$ which is the eqn. of a straight line.

(ii) $d=5(t-3)^2+45$ so for min., t=3 at which time $d^2=45$.

(111)
$$\sqrt{45} = 6.71$$

(ii)
$$u_n = 1.015u_{n-1}$$
 100, $u_0 = 1500$
(n=1,2,..)

(iii) Solve

$$0 = (1500 - \frac{100}{0.015})(1.015)^n + \frac{100}{0.015}$$
$$(1.015)^n = \frac{6666.67}{5167.67} = 1.2901$$
$$n = \frac{\ln 1.2901}{\ln 1.015} = 17.12$$

so loan is repaid in 18 months, following a final smaller monthly repayment.

Qn.18 (a) The equilibrium population. (b) It will settle down to E=100 in an oscillatory manner because r=1.9 is between 1 and 2.

(c)
$$P_2 = 27 \left[1 + 1.9(1 - \frac{27}{100}) \right] = 64.449$$

 $P_2 = 64.449 \left[1 + 1.9(1 - \frac{64.449}{100}) \right] = 107.98$

One of these two values is above, and the other below the equilibrium value which is consistent with oscillation towards equilibrium value.

(d) plot is saw-tooth curve converging on 100 from either side.

(c) Unlikely since equilibrium level is likely to increase, and so in early years series is more nearly geometrical.

Qn.19 (a)
$$a(t) = -50\sin(2t)$$
,

(b) $x(t) = 12.5\sin(2t) + 32.5$

(c) Eliminate
$$\sin(2t)$$
: $4x = -a + 4(32.5)$
 $\Rightarrow a = 130 - 4x$

(d) at lowest point x is max at 45 ft. below platform.

max. accn is 50 when $\sin(2t)=-1$ (e) $a = 10 \Rightarrow x = 30$. Max length is when x=45, which = $1\frac{1}{2}$ of unstretched length.

Q11.20

(a) (i) (a) These are two independent events so probability $(5,5) = 0.2 \times 0.2 = 0.04$.

(b) a "double" can happen in 5 ways, so probability = $5 \times 0.04 = 0.2$

(ii) (a) 0.8

(b) py(A chooses 1)=1/5 in which case py(B greater than A)= 4/5

Adding the probabilities for the four mutually exclusive possible ways in which B can choose a value greater than A's gives

$$\frac{1}{5}\left(\frac{4}{5} + \frac{3}{5} + \frac{2}{5} + \frac{1}{5}\right) = 0.4$$

(iii) The words "at least" indicate that you should calculate the probability of the "reverse" event, and then subtract this from 1 The reverse event is "same integer" for which py. is 0.2 so answer is $1 - (0.2)^4 = 0.9984$.

(b) (1)
$$(1 \times \frac{4}{5} \times \frac{3}{5}) = 0.48$$

(ii) 1-py(all three different) = 0.52