PART I

- (i) You should attempt as many questions as you can in this part.
- (ii) Write your answers in the answer book provided, beginning each question on a new page.
- (iii) Questions in this part do not necessarily carry equal marks. The mark allocation is indicated for each question.

Question 1

Draw a sketch of the graph of the function f defined by

$$f(x)=\frac{3-2x}{x+1}.$$

Your sketch should include:

- (a) any asymptotes for the graph;
- (b) any points where the graph crosses the axes.

[4]

Question 2

Express the complex number $z = \left(\frac{7-i}{3+i}\right)^2$ in Cartesian form.

Write down |z| and $\sin \theta$ where θ is the argument of z.

[5]

Question 3

Find the matrix of the linear transformation

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \longmapsto (2x+y,3x-y)$$

with respect to

- (a) the standard basis in both domain and codomain;
- (b) the basis $\{(1,1),(2,-3)\}$ in the domain and the standard basis in the codomain;
- (c) the basis $\{(1,1),(2,-3)\}$ in both domain and codomain.

[5]

Question 4

The set S is defined by $S = \{(a, b, 3b - a) : a, b \in \mathbb{R}\}.$

- (a) Show that S is a subspace of \mathbb{R}^3 .
- (b) Show that the vectors (1,0,-1) and (1,1,2) belong to S. Express the general vector (a,b,3b-a) as a linear combination of these two vectors.

Explain why the set
$$\{(1,0,-1),(1,1,2)\}$$
 is a basis for S.

[5]

Question 5

Find the solution set of the inequality

$$\frac{3x}{x^2-4}<1.$$

[5]

Determine whether or not each of the following sequences $\{a_n\}$ converges, naming any result or test that you use. If it does converge, find its limit.

(a)
$$a_n = \frac{n^3 - 11n + 4(n!)}{2n^2 + n! - 6}$$

(b)
$$a_n = \frac{2n^4 + 5^n + 8}{n^3 + 11n + 3^n}$$
 [6]

Question 7

Show that the function

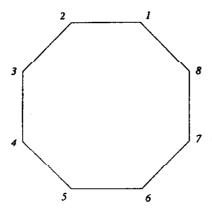
$$f: x \longmapsto \begin{cases} \sin 2\pi x, & x \leq 1, \\ x^2 - 1, & x > 1, \end{cases}$$

is continuous on R. You should name any test or result that you use to justify your answer.

[5]

Question 8

This question concerns the symmetry group G of the regular octagon, shown below.



Let $g \in G$ be the anticlockwise rotation of the octagon through an angle of $\frac{3\pi}{4}$ about its centre, and let $h \in G$ be the reflection of the octagon in the line through the vertices at locations 3 and 7.

- (a) Write g, g^2 and h in cycle form, using the numbering of the locations of the vertices as shown above. State the order of g.
- (b) Express the conjugate ghg^{-1} , of h by g, in cycle form, and describe ghg^{-1} geometrically.
- (c) Are the symmetries k = (15)(26)(37)(48) and l = (12)(38)(47)(56) conjugate? Give a brief reason for your answer.

[5]

In this question

$$G = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$$

which is a group under the operation of multiplication modulo 21. (You are NOT asked to prove this result.)

- (a) Find a subgroup of G of order 6.
- (b) Write down the homomorphism property as it would apply to the specific case of a function

$$f: G \longrightarrow \mathbb{Z}_4$$
.

(c) Specify (by giving the image of each element of G) a homomorphism

$$f: G \longrightarrow \mathbb{Z}_4$$

that has as kernel the subgroup that you found in part (a).

[5]

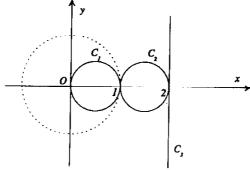
Question 10

- (a) Find an affine transformation $t: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ which sends the points (0,0), (1,0), (0,1) to the points (2,3), (5,7), (3,5), respectively.
- (b) Find the inverse of t, and hence or otherwise find the image of the line y = 2x under t.

[6]

Question 11

Let C_1 and C_2 be circles of radius $\frac{1}{2}$ centred at $(\frac{1}{2},0)$ and $(\frac{3}{2},0)$, respectively, and let C_3 be the extended line with equation x=2.



Draw a sketch showing the images of C_1 , C_2 and C_3 under inversion in the unit circle \mathcal{E} . Mark clearly which image is which.

[4]

Question 12

- (a) Find the equation of the Line which passes through the Points A = [1, 2, 3] and B = [1, 1, 1]. Check that the Points C = [2, -1, -4] and D = [3, 1, -1] lie on this Line.
- (b) Calculate the cross-ratio (ABCD).

[5]

Prove that

$$\lim_{x \to 1} \frac{x - (3 - 2x)^{1/2}}{x^2 + x - 2}$$

exists and determine its value.

[5]

Question 14

This question concerns $I_n = \int_1^e x (\log_e x)^n dx$, $n \ge 0$.

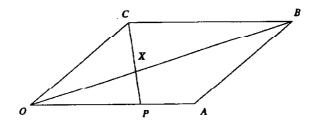
- (a) Evaluate I_0 .
- (b) Show that $I_n = \frac{e^2}{2} \frac{n}{2}I_{n-1}$, where $n \ge 1$, and hence evaluate I_2 . [5]

PART II

- (i) You should attempt no more than THREE questions from this part.
- (ii) Each question carries 10 marks. The mark allocation for each section of a question is given in square brackets beside the section.
- (iii) Start each question on a new page of your answer book.

Question 15

The parallelogram OABC has vertices at O (the origin) and at points A, B, C with position vectors a, b, c respectively. The point P lies two-thirds of the way along OA from O. The lines OB, CP intersect at X.



- (a) Write down the position vectors b and p of the points B and P, respectively, in terms of a and c.
- (b) Find the vector form of the equations of the lines OB and CP, in terms of a and c and hence find the position vector of the point X. In what ratio does X divide OB?
- (c) If a = (3, 1) and c = (1, 2) show that CP is perpendicular to OB, and find the cosine of the angle between OC and OB. [4]

Question 16

The matrix $\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$ represents a linear transformation f with respect to the standard basis in both the domain and the codomain.

- (a) Determine the characteristic equation of A and solve this equation to find the eigenvalues of f. [3]
- (b) Find a basis for \mathbb{R}^3 consisting of eigenvectors of f. [4]
- (c) The matrix C of f with respect to the eigenvector basis that you chose in part (b) in both domain and codomain can be expressed as $C = P^T A P$. Find a suitable matrix P, and write down the matrix C.

Question 17

Determine whether or not each of the following series is convergent, naming any result or test that you use.

(a)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2+n-1}$$
 [3]

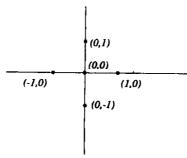
(b)
$$\sum_{n=1}^{\infty} \frac{n^3 2^n}{n!}$$
 [3]

(c)
$$\sum_{n=0}^{\infty} \frac{1+2\cos n}{2n^2+1}$$
 [4]

[4]

[3]

The diagram below shows the five points (0,0), (1,0), (0,1), (-1,0) and (0,-1) in \mathbb{R}^2 .



(a) List the set G of rotations, r_{θ} , and reflections, q_{ϕ} , of the plane that fix the set $\{(0,0),(1,0),(0,1),(-1,0),(0,-1)\}$ (as a set).

[3]

You may assume now that the group G acts on the plane \mathbb{R}^2 in the natural way; that is, for $g \in G$ and $x \in \mathbb{R}^2$,

$$g \wedge x = g(x)$$
.

(You are NOT asked to prove that this is a group action.)

- (b) Find the orbit and the stabiliser of
 - (i) (0,0),
 - (ii) (0,1),
 - (iii) (1,1),
 - (iv) (2,1).

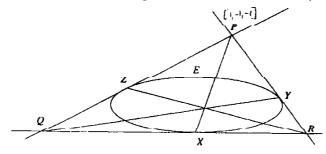
[7]

Question 19

(a) Let E be the non-degenerate projective conic with equation

$$xy + yz + zx = 0.$$

- (i) Show that E passes through the Points $X=[1,0,0],\ Y=[0,1,0]$ and Z=[0,0,1].
- (ii) Find an equation for the tangent to E at each of the Points X, Y and Z.



- (iii) Determine the Point P where the tangents at Y and at Z meet. Hence or otherwise find the Point Q where the tangents at X and at Z meet and the Point R where the tangents at X and at Y meet.
- (iv) Show that the Lines XP, YQ and ZR meet at a single Point.

[8]

(b) Let ABC be an arbitrary triangle which touches a non-degenerate projective conic F at Points U, V, W. Use your answer to part (a) to explain why the Lines UA, VB, WC are concurrent.

[2]

This question concerns the linear flow for which the velocity function is

$$V(x,y) = (3x + 2y, x + 4y).$$

- (a) Write down
 - (i) the matrix A of the flow;
 - (ii) the first order differential equations satisfied by the co-ordinate functions f and g of any flow function $\alpha=(f,g)$ for this flow;
 - (iii) a second order differential equation satisfied by both f and g. [3]
- (h) Find the general solution of the differential equation in part (a)(iii). [3]
- (c) Determine the flow function α for V which satisfies $\alpha(0) = (1,4)$. [4]

[END OF QUESTION PAPER]

M203/G 8