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Question 9
@ ()
Next Ri | R | R;
Instruction
1 2 1 3
2 2 1 3
3 2 1 3
4 2 2 3
5 2 2 4
1 2 2 4
6 2 2 4
STOP 2 2 4

(i) (b) f':IN— N is defined by fp'(n)=n. Itis a total function.

@ (o)

fp> (n, m) is a total function. If m < n then the loop terminates when the contents of registers 1 and
2 are equal. If m > n then the loop terminates when the contents of registers 1 and 3 are equal.

n+m, ifm>n

[ 6% N? = N is defined by £(n, m)={ .

n, otherwise

£°: IN* > IN is defined by fp’(n, m, p) is not a total function. If n is less than both m and p then the
contents of register 1 is never equal to the contents of registers 2 or 3. Therefore the loop never
terminates.

(ii)
1 J(1,2,7)
2 S(2)
3 I(1,2,6)
4 SQ3)
5 1(1,1,2)
6 CG,1).
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Question 10
(1

The characteristic function for the relation >,
v>: IN* > IN be defined by 7. (n,m)=sg (n= m).

Ifn>mthenn -~ m>0andsoy-(n,m)=1.

Ifn<mthenn -~ m=0 and so y- (n, m) = 0.

Since - is obtained by substitution from the total primitive recursive functions sg and = then y-
is also a total primitive recursive function.

Therefore > is a primitive recursive relation.

(i)

Since A and B are primitive recursive sets then their characteristic functions y5 and yp are
primitive recursive.

Let yang (n) = mult (ya(n), xs(n)). As yxans (n) is obtained by substitution from the primitive
recursive functions mult, xa, ¥ then yanp is a primitive recursive function.

Since yang (n) equals 1 if and only if both ya(n) and yp(n) are 1 then yanp is the characteristic
function for ANB. Therefore the set ANB 1is primitive recursive.

(iii) Use of Unit 2 Theorem 1.5

Define the functions
g(n, m) = m’ = exp(m, 5)
g2(n,m) =9 = ¢} (n, m),
g>(n, m) =m + n = add(m, n),
and the relations
Ri(n, m) < Xg(nm + 5),
Ry(n, m) < 3n + 2m = 9000,
R3(n, m) < not Ri(n, m) and not Ry(n, m).

Then we can write
gi(n,m) if Ry(n,m)
f(n,m) = Jg,(n,m) if R,(n,m)
g3(n,m) if Ry(n,m)
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As g1, g, and gz can be written the primitive recursive functions C3, add, and exp using constants
then g;, g, and g3 are primitive recursive functions.

The characteristic function of the relation Ry, 3, (n,m)= Xg(mn + 5). As Ar, is obtained by

substitution from the primitive recursive functions y;, mult and add using constants, then it is a
primitive recursive function. Hence R; is a primitive recursive relation.

The characteristic function of the relation Ry, xg,(n,m)= %, (3n+2m,9000). As y_is obtained by
substitution from the primitive recursive functions y, , mult and add using constants, then it is a

primitive recursive function. Hence R; is a primitive recursive relation.

Using the result of Unit 2, Problem 1.10, then R is also a primitive recursive relation.

From the definition of Rj it follows that the set of relations R;, R,, and Rj are exhaustive.

If the relation R; holds then both n and m are odd. If the relation R, holds then n is even.
Therefore R; and R, are mutually exclusive. From the definition of R3, if the relation R3 holds then

neither R, or R, holds. Therefore Ry, R, and R3 are mutually exclusive.

Since all the conditions required for the use of Theorem 1.5 of Unit 2 hold then it follows that f is
primitive recursive.
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Question 11

(D(a)

g(l’ll, ny, 1’13) = f(Ug<n1’n29n3)aUl3 (nlanz’n3)9h<nl’n2’n3))a

where h(n,,n,,n;)= zero(Ug (ny,n,,n, ))
As h is obtained by substitution from the basic primitive functions zero and U3 then h is primitive
recursive.

As g is obtained by substitution from the primitive recursive functions f, U7, U3, and h then g is a
primitive recursive function.

(H(b)

Let  exp(n, 0)=f(n), where f(n)=succ(zero(n)).
and  exp(n, m+ 1) = g(n, m, exp(n, m))
where g(nj, ny, n3) = mult(U; (n;,n,,n5),U3(n;,n,,n5)).

As fis obtained by substitution from the primitive recursive functions succ and zero then it is
primitive recursive.

g is a primitive recursive function since it is obtained by substitution from mult and the basic
primitive recursive functions U;, and Uj. As exp is formed by primitive recursion from the
primitive recursive functions f and g, then exp is a primitive recursive function.

(i)

Consider the relation T givenby T(n,y)<n<3"”.
The relation < is primitive recursive [HB p21] and the function exp(3, y) is primitive recursive by

part (i)(a).

xt (n, y) = y<(n, exp(3, y)) , is obtained by substitution from the primitive recursive functions y<
and exp using constants. Hence it is primitive recursive [HB p21 result of problem 1.10].

By Theorem 3.5 [HB p23] the function g : IN* — IN given by

gn, z) = py <z T(n,y)
is primitive recursive.

As n < 3" then a suitable bound on y in terms of n is n, so
f(n) =py <n T(n, y) = g(n, n).
As f'is obtained from the primitive recursive function g by substitution then f is primitive recursive
[Unit 2 Problem 1.4].
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Question 12

)

(i)

(iii)(a)

[[ Similar to Unit 3, Problem 3.3. ]]

For any natural number n, define a URM program by

(S
(2) C(, 1)
(n +.1) C(n, n)

This implements the identity function successor function succ since it halts with the original
value + 1 in register 1. As a program exists for each n € IN, where n > 0, then there are
infinitely many such programs.

[[ See Unit 3, Problem 3.4. ]]
We need to store the contents of register 1 in a register not used by the program P, run P,

restore the contents of register 1, and add 1 to it. The program P can be created by
concatenating the programs

()  C, p(P) + 1),

P, and
(1) C(p(P)+ L1)
2) S(1).

If f; is total, then P* saves the input in a register not used by P, and then executes P. As f,

is total, the last two instructions of P* are also executed. These add one to the original
value of register 1. Therefore P* computes the successor function..

If f; is not total, then P will not halt for some input n. For this input, P* will execute the
first instruction. As this does not affect register 1 the program P will not halt.

So P* computes the successor function precisely when the function f} is total.

[[ See Unit 3, Problem 3.4. ]]

To test if a number e € Tot check if e codes a URM program. If it does not then e & Tot.
If it does code a URM program then the instructions of the program P can be recovered
from e. Then P which computes the successor function can then be created as described
in part (ii).

The code number ¢ of P* can then be determined. If the set X is recursive then there is an
algorithm for deciding if a number ¢ € X. Ase € X ifand only if e € Tot then we can
determine whether e € Tor.

(iii)(b) Theorem 3.2 of Unit 3 states that there is no algorithm which determines whether e € Tot.

As we have found one then the assumption that the set X is recursive must be false.
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Question 13

@

Let ¢ be the subformula Jy }/ =Xx; ybe —|}/ =x; and y be Jy (}/ =x o dy }/ =X).
The given formula can then be writtenas  ( (= > (v &) > (y V ¢ ))

A truth table for this formula is

Pl Y |((=0>W&Y)>WVe)
111 011111 1111
1{1]o] o111 100 1 111
1]o]1 011001 1011
1/olo] 011000 1 011
0[1]1 101 111 1110
ol1]o0 100100 1 110
0(0]1 100001 1000
0lo]o 100000 1 00O
O O 3 O

Since column 3 is all ones then the formula takes the truth value 1 under all interpretations.

(ii)(a)
Line 1 2 3 4 5 6 7 8 9
Ass. 1 1 3 4 1,3 1 1,3 1,4 1
(ii)(b)

(¢ & ~y) &(y = 0)) = (v —0)).

(ii)(c)

(A) YES (B) NO. [[ v or 6 may contain free occurrence of x ]]

(iii)

As y cannot be freely substituted for x in dy X = y then the proof is not valid.

Take the standard interpretation _/~ with domain IN. In this interpretation ¥x dy x' =y is true as
there is always a number y which is equal to the successor of x.

There is not a number y which is equal to its successor so Iy y =y is false. Therefore Iy y =y is
not a logical consequence of Vx Jy x'=y.
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Question 14
(1

(a) NO [[ z becomes bound]] (b) NO [[ t becomes bound]] (c) YES

(ii)(a)
1 (1) VxVyEx+y)=z Ass
1 Q) VyE+y)=z UE, 1
1 3) & +y)=z UE, 2
1 4 3y +y) =z EL 3
1 (5) Iy +y)=z El 4

Therefore Vx Vy (x +y)=z |} Ix Iy X +y)=z

(ii)(b)
1 1 (@& Vx—y) Ass
2 (2)  Ix(=pVH Ass
3 3 (Vo Ass
4 4 Vx(0-v) Ass. Contradiction
1 5 Vx—y Taut, 1
1 (6) -\ UE, 5
4 7N O->w UE, 4
L4 ®) 6 Taut, 6, 7
1,3,4 (9) _'d) Taut, 3, 8
1 (10) ¢ Taut, 1
1,3,4 (11) (¢ &) Taut, 9, 10
1,2,4 (12) (¢ & =) EH, 11
L2 (13) (Vx(0->vy) > (0 & —0)) CP, 12
L2 (14 —Vx©0-y) Taut, 13
1 (15)  @@x (= V 0) > = Vx(0—>v)) CP, 14

The assumption that x does not occur free in ¢ is required for the use of EH on line (11).
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Question 15

(@) [[ Looks as if both sides equal (0 . x). ]]

- (1) (0.x)+x.0)=((0.x)+(x.0)) II

2 2) VX (x.0)=0 Ass. Q6
2 3) x.0)=0 UE, 2

2 4) ((0.x)+(x.0)=(0.x)+0) Sub, 1, 3
5 (%) VX (x +0)=x Ass. Q4
5 (6) ((0.x)+0)=(0.x) UE, 5
2,5 (7) (0.x)+(x.0)=(0.x%) Sub, 4, 6
- (8) (0+0).x)=({(0+0).x) II

5 9) 0+0)=0 UE, 5

5 (10)  (0.x)=((0+0).x) Sub, 8,9

2,5 (1) ((0.%)+(x.0) =((0+0).x) Sub, 7, 10
2,5 (12) ¥x((0.x)+(x.0) =((0+0).x) UL 1l

b

As the assumptions are axioms of Q then the sentence is a theorem of Q.

(ii) In the interpretation # ~ let x = o.. Then x' = o.. There is no value ysuchthat (y+a)=a.
Therefore in # ~ the sentence JyVx (y + x')=x' is not true.

All the axioms of Q hold in # . As Ty Vx (y + x')=x' does not hold in # " then, it
follows by the Correctness Theorem, the sentence is not a theorem of Q.

(iii)
1 (1) Vx (x +0)=x Ass. Q4
1 2) (Y +0)=y UE, 1
1 3 Yy +0=y UL 2
1 (4)  IxVy(y +x)=y EL 3

As the assumption is an axiom of Q then the sentence is a theorem of Q.
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Question 16

(@

(ii)(2)

(ii)(b)

(iii)

Solution by Linda Brown.

Suppose that theory T is not consistent but has an interpretation

Hence there is a sentence of T, ® say, such that | r® and | 1 — @,
i.e. both ® and — @ are theorems of T

By the Correctness Theorem both @ and — @ are true in every interpretation in which the
sentences of T are true and so must be true in the interpretation of T

However a sentence cannot be both true and false in the same interpretation and this
contradicts our original supposition

Hence a theory which has an interpretation is consistent

The standard interpretation ./, is an interpretation for each of the theories Q and CA.
Therefore by part (i) both Q and CA are consistent.

Q is not complete. Vx Vy (x +y ) = (y + X) is a sentence in Q. This sentence is true in the
interpretation ./~ of Q but false in the interpretation./ of Q.

As theory CA consists of all the sentences of the formal language that are true in the

standard interpretation . /, i.e. for every sentence either fca ®@ or |ca — @, therefore CA is
complete. (Linda Brown)

If there is an algorithm for deciding which sentences are theorems of CA then CA must be
recursively axiomatizable. By Unit 8, Theorem 2.4, CA is not recursively axiomatizable.
Hence there is no such algorithm.

END OF PART II SOLUTIONS
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