M381 Logic 2004

Question 9

(i)(a) (2 marks)

Next Ri | Ry | R;s R4
Instruction

1 2 3 1 0
2 2 3 1 0
3 2 4 1 0
4 2 4 1 1
1 2 4 1 1
5 2 4 1 1

STOP 4 4 1 1

(i)(b) (5 marks)
fp': IN = IN is defined by fp'(n)=0. It is a total function.

% IN* > IN is defined by fp*(n, m) = m. It is a total function.

fp>: IN* > IN is defined by fp°(n, m, p) =m + p. It is a total function.

m+p—-q, ifp=>q

f* IN* > IN is defined by f?(n,m,p,q)=
P is defined by f;'( p.q) {undeﬁned, otherwise.

(ii) (4 marks)

S(2)
S(2)
11,2, 6)
Z(1)
S(1).

DN AW~
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Question 10
(i) (22 marks) See Unit 2, Problem 1.9

Let y< IN* > IN be defined by Xg(n,m) = % (n= m).

Ifn>mthenn — m> 0 and so y< (n, m) =0.

Ifn<mthenn - m=0andso y<(n, m)=1.

Since x< is obtained by substitution from the total primitive recursive functions % and = then y<
is also a total primitive recursive function.

Therefore y< is a characteristic function for the relation < and so it is primitive recursive.

(ii) 2%> marks See Unit 2, Problem 1.10

The characteristic function yr of the relation R is primitive recursive.

Let XT(nl,nz,...,nk ):sg(xR(nl,nz,...,nk ))

Therefore the relation T is primitive recursive since its characteristic function is obtained by
substitution from the primitive functions sg and ¥y .

(iii) 6 marks Use of Unit 2 Theorem 1.5

Define the functions
gi(m, n)=7= C3 (m, n),
g>(m, n) = mn = mult(m, n),
g3(m, n) =n’ = exp(n, 3)
and the relations
Ri(n, m) < 60 < min(n, m),
Ry(n, m) < 4n + 3m = 400,
R3(n, m) < not R;(n, m) and not Ry(n, m).

Then we can write
gl(m,n) if Rl(rn,n)
f(n,m)={g,(m,n) if R,(m,n)
g3(m,n) if R3(m,n)

As g, g, and g3 can be written the primitive recursive functions C2, mult, and exp using constants
then g;, g», and g3 are primitive recursive functions.
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The characteristic function of the relation Ry, (n,m) = y_.(60,min(n,m)). As Ar, is obtained by

substitution from the primitive recursive functions y _, and min using constants, then it is a
primitive recursive function. Hence R, is a primitive recursive relation.

The characteristic function of the relation Ry, 7, (n,m)= Yeq (4n +3m,400). As A, is obtained by
substitution from the primitive recursive functions y, , mult and add using constants, then it is a

primitive recursive function. Hence R, is a primitive recursive relation.

Using the result of Problem 1.10, then Rj is also a primitive recursive relation.

From the definition of Rj it follows that the set of relations R;, R,, and Rj are exhaustive.

If the relation R holds then m > 60 and n > 60. Therefore 4n +3m >4 * 60 + 3 * 60 = 420. Since
R, does not hold then R; and R, are mutually exclusive. From the definition of Rj, if the relation Rj

holds then neither R; or R, holds. Therefore R;, R, and R3 are mutually exclusive.

Since all the conditions required for the use of Theorem 1.5 of Unit 2 hold then it follows that f is
primitive recursive.
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Question 11
(i)(a) (2 marks)
Let C;(nl,nz,n3):succ(succ(zero(Uf (nl,nz,n3)))).

As C3 is obtained by substitution from the basic primitive recursive functions succ, zero, and U;
then C3 is a primitive recursive function.

(i)(b) (3 marks)

Let  mult(n, 0) = zero(n),
and  mult(n, m + 1) = g(n, m, mult(n, m))
where g(nj, ny, n3) =add(Uj(n,,n,,n;),U3(n;,n,,n5)).

g is a primitive recursive function since it is obtained by substitution from add and the basic
primitive recursive functions U3, and Uj. Since zero is a basic primitive recursive functions and g
is a primitive recursive function then mult is a primitive recursive function.

(ii)(a) (2 marks)

Let R be the relation 'the remainder of y on division by 4 is 1'. A characteristic function for R is,
AR (Y) =Xeq (rem (y’4) ’1) .

As yy 1s obtained by substitution from the primitive recursive functions ., and rem using

constants then y 1s a primitive recursive function. Therefore R is a primitive recursive relation.
(ii)(b) 4 marks
An improved version by Lisette Petrie.

f(n) = wy(n <y and the remainder of y on division by 4 is 1)
Consider the relation 7 given by
T(n, y) < n <y and the remainder of y on division by 4 is 1.
The relation < is primitive recursive [HB p21] and the relation “the remainder of y on division by 4
is 17 is primitive recursive by part (a).
Then xr(n, ) = x<(n, y) and x&(y),
which is obtained by substitution from the primitive recursive functions < and yz and so is
primitive recursive [HB p21 result of problem 1.10].
By Theorem 3.5 [HB p23] the function g : IN? = IN given by
- g =wy<zT(n,y)
18 primitive recursive.
A suitable bound on y in terms of n is n + 4, so
fin)=py < (n+4) T(n,y) =g(n, n+4)
which is a substitution of primitive recursive functions using constants, so is primitive recursive.
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Question 12

Solution by Wilson Stother.
(i) (2 marks)

For any natural number 7, define the URM program I(n) by

(1) C(1,n).
This implements the identity function id since it halts with the original value in register 1.
Thus there are infinitely many such programs.

(ii) (5 marks)

Given a program P, first determine the maximum register number p(P) used by P.
Now create P* by concatenating the following programs

(1) C(1, p(P)+1),
P, and

(1) C(p(P)+1,1).

If f; is total, then P* saves the input in a register not used by P, executes P, and, as f} is

total, moves on to the last instruction of P* which restores the original value of register 1.
Thus P* computes the identity function id in this case.

If f; is not total, then P* will not halt for some input n. For this input, P* will execute
the first instruction. This does not affect register 1, so the program P will not halt. Thus, P*
will not halt for this input. Hence the function computed by P* is not total, and so P*
cannot compute the identity function.

(iii) (4 marks)

Suppose that X is recursive. Then there is an algorithm for testing whether a code number
e*isin X.

Tot is the set of code numbers of URMs which compute total functions of one variable.
We now have the following algorithm for deciding whether a given integer e is in 7ot.

There is a simple algorithm to check whether e is the code number of a URM.
If not, then e is not in Tot.

Otherwise, we can recover P from e, and construct P* as in (ii).

Let P* have code number e*.

From part (i1), e € Tot if and only if e* € X.

The existence of such an algorithm contradicts Theorem 3.2, so our assumption must be
false.

Hence X is not recursive.
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Question 13

@

Let 0 be the formula x'=y; @be3Ixx'=y; and ybe Vx (x =y v Ixx =y).

The given formula can then be written as

(3 marks)

A truth table for this formula is

2004

(((Ov @) > y) > (—y = —0)).

0 [0 [w]({(Ov > w) > (—w——0)
11111 11111 1 01 1 o1
11110 11100 1 10 0 01
11011 11011 1 01 1 01
11010 11000 1 10 0 01
01]1 01111 1 01 1 10
0110 01100 1 10 1 10
01011 00011 1 01 1 10
0(01]0 00010 1 10 1 10

2 3 @2 3E

Since column 4 is all ones then the formula takes the truth value 1 under all interpretations.

(ii)(a) (22 marks)

(a) 2 1/2 marks. Same as 2003 with lines 1 and 2 interchanged.

Line 1

o
N
W
(@)
<
N}

Ass. 1 2 1 4 1,2 1,2 1,4 1 1,4

(i))(b) (% mark)

(0> w)(v&9)
O->w)
(ii)(c) (2 marks)
(A) NO (Correction by Linda Brown). (B) YES.
(iii) 3 marks. This is the solution given to Problem 2.8 in Unit 5.

Let y be the formula v =0, and ¢ be the same formula v = 0. ¢ is trivially a logical consequence of
vy and v occurs freely in .

In the standard interpretation ./ give v the value 0 in the domain IN. Then the formula v =0 is
true, but Vv v =0 derived by use of the Ul rule is false.
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Question 14
@) (2 marks)
Vz (Vx3tt=(yx) < Vy({y +2)= (X +1)

(a) NO (b) NO (c) YES

(ii)(a) (3 marks)

1 (1) JyVx(x+ty)=y Ass
2 (2) Vx(x+y)=y Ass

2 3) &+y=y UE, 2
2 4 3y +y=y EL 3
2 (5) Iy +y) =y EL 4
1 6) Iy +y) =y EH, 5

Therefore 3y Vx (x +y)=y } Ix Iy X' +y)=y.

(i))(b) (6 marks)

1 (1) [0} Ass

2 (2) vx(0 v —0) Ass

3 3) Ix—(y — 0) Ass. Contradiction
4 4) - (y—0) Ass

4 (5) —0 Taut, 4

2 (6) (0 v —0) UE, 2
24 (7) -0 Taut, 5, 6
1,2,4 (8) (¢ & —¢) Taut, 1, 7
1,23 (9) (6 & —¢) EH, 8

1,2 (10) (3x—(y > 0) > (¢ & —0)) CP,9

1,2 (11) —=3Ix—(y > 0) Taut, 10

1 (12)  (Vx(0 v —¢) > —Ix—(y > 0))  CP, 11

The assumption that x does not occur free in ¢ is required for the use of EH on line (9).
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Question 15 (11 marks)

)

(i)

(iii)

0=(0+x).
- (1)
2 2
2 3)
2 4)
- (5)
2 (6)
2 (7)
2 (8)
2 ©)

2004

((0+0)+x)=(0+0)+x)
VX (x +0)=x

0+0)=0
((0+0)+x)=(0+x)

0+ (x+0)=(0+(x+0)
(x +0)=x
0+x)=(0+(x+0)

((0+0)+x)=(0+(x+0)
VX ((0+0) +x)= (0 + (x +0))
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II

Ass. Q4
UE, 2
Sub, 1, 3

II
UE, 2
Sub, 5, 6

Sub, 4, 7
UL 8

As the assumption is an axiom of Q then the sentence is a theorem of Q.

In#" letx=oa, and y = a. Then
(x+y)+x)=((ata)+a)=(B+o)=p,and

x+y+x)=(at(ato)=(@+p)=o

All the axioms of Q hold in # . As VxVy ((x +y) + x) = (x + (y + x)) does not hold in #
then, it follows by the Correctness Theorem, the sentence is not a theorem of Q.

Solution by Wilson Stother.

(1
)
3)
4
)
(6)
(7
®)

S SN

VX (x +0)=x
((0+y)+0)=(0+y)
O+(y+0)=0+(y+0)
(yt0)=y
O0O+y)=(0+(y+0)
((0+y)+0)=(0+(y+0)
Vy (0+y)+0)=(0+(y+0))

Ass. Q4
UE, 1

11

UE, 1
Sub, 3, 4
Sub, 2, 5
Ul 6

IxVy(x+y)+x)=(x+(y+x)) EL7

As the assumption is an axiom of Q then the sentence is a theorem of Q.
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Question 16

Solution by Linda Brown.
(i) (3 marks)

Suppose that theory T is not consistent but has an interpretation

Hence there is a sentence of T, ® say, such that | r® and |t — @,
i.e. both @ and — @ are theorems of T

By the Correctness Theorem both @ and — @ are true in every interpretation in which the
sentences of T are true and so must be true in the interpretation of T

However a sentence cannot be both true and false in the same interpretation and this
contradicts our original supposition

Hence a theory which has an interpretation is consistent
(ii)(a) (3 marks)

Theory Q is consistent as a consequence of Problem 3.4
Hence — 0 =0’ and 0 = 0’ cannot both be theorems of Q

Vx — 0=x"is an axiom of Q
Hence forx=0,-0=0’,1.e. 0 # 1
Therefore — 0 = 0’ is a theorem of Q

Hence 0 =0’, i.e. 0 = I cannot be a theorem of Q
(ii)(b) (1 mark)
Vx (0+x)=x
(iii) (4 marks)
(iii)(a) Theory CA is consistent because it has an interpretation, . /, by part (1)

(iii)(b) As theory CA consists of all the sentences of the formal language that are true in the

standard interpretation . /, i.e. for every sentence either fca @ or |ca — @, therefore CA is
complete.

CA is also consistent by part (ii)(a)

CA is an extension of Theory Q because the axioms of Q are derivable in CA

Hence by Theorem 2.3, Godel’s Incompleteness Theorem, CA is not recursively
axiomatizable, i.e. CA does not have a recursive set of axioms.

[Alternatively Theorem 2.4 gives this result directly]
END OF PART II SOLUTIONS
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