[[Comments are written like this.

Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements.]]

Question 1

(i) (4 marks)

$$230 = 2 * 103 + 24$$
 $103 = 4 * 24 + 7$
 $24 = 3 * 7 + 3$
 $7 = 2 * 3 + 1$
 $3 = 3 * 1 + 0$

Therefore as gcd(230, 103) = 1 then 230 and 103 are relatively prime.

$$1 = 7 - 2 * 3$$

$$= 7 - 2 * (24 - 3 * 7) = 7 * 7 - 2 * 24$$

$$= 7 * (103 - 4 * 24) - 2 * 24 = 7 * 103 - 30 * 24$$

$$= 7 * 103 - 30 * (230 - 2 * 103) = 67 * 103 - 30 * 230.$$

Therefore 103x - 230y = 1 when x = 67 and y = 30.

(ii) (4 marks)

Let P(n) be the proposition $1 + 5 + 12 + 22 + ... + \frac{1}{2} n(3n - 1) = \frac{1}{2} n^2 (n + 1).$

P(1) is
$$1 = \frac{1}{2} * 1^2 * (1 + 1)$$
.

As P(1) is true then we have the basis for induction.

Assume P(k) is true for some positive integer k.

$$\begin{array}{l} 1+5+12+22+...+\frac{1}{2}\,k(3k-1)+\frac{1}{2}\,(k+1)[3(k+1)-1]\\ =\frac{1}{2}\,k^2\,(k+1)+\frac{1}{2}\,(k+1)(3k+2) & \text{(using the induction hypothesis)}\\ =\frac{1}{2}\,(k+1)\,(k^2+3k+2)\,=\frac{1}{2}\,(k+1)^2\,(k+2). \end{array}$$

Therefore if P(k) is true then P(k+1) is true. This completes the induction step. The result then follows from the Principle of Mathematical Induction.

(iii) (3 marks)

```
gcd(a, b) = 1 \Rightarrow gcd(a, -b) = 1 \Rightarrow gcd(a, a - b) = 1.
Therefore if c \mid a - b then gcd(a, c) = 1.
```

[[Alternatively. Since gcd(a,b) = 1 then we can write $1 = \alpha a - \beta b = (\alpha - \beta)a + \beta(a - b)$, where α and β are integers. As $c \mid a - b$ then we can write 1 = ma + nc for some integers m and n. As 1 can be expressed in this form then gcd(a, c) = 1.]]

Question 2 (11 marks)

(i)

False. 87 = 29 * 3 = 17 * 5 + 2. The prime divisors 29 and 3 are not of the form 17m + 2.

As 2 is of the form 17m + 2 then we only need to consider odd values of m.

(ii)

Any prime greater than 3 can be expressed in the form

$$12k + 1$$
, $12k + 5$, $12k + 7$, $12k + 11$.

 $1^2 \equiv 5^2 \equiv 7^2 \equiv 11^2 \equiv 1 \pmod{12}$. Therefore if p > 3 is a prime then p^2 is of the form 12k + 1.

Therefore the statement is **true**.

(iii)

Any twin primes greater than 3 must either be of the form

or
$$12m + 5$$
, $12m + 7$
 $12m + 11$, $12(m + 1) + 1$.

In both cases the sum of the primes is divisible by 12. Therefore the statement is **true**.

(i) (1 mark)

Since $n \equiv 5 \pmod{10}$ then n = 10k + 5 for some integer k. Therefore 6n + 1 = 6(10k + 5) + 1 = 60k + 31.

As $6n + 1 \equiv 7 \pmod{12}$ then the least positive residue modulo 12 of 6n + 1 is 7.

(ii) (4 marks)

Let $0 \le i, j \le n-1$.

If $c + ia \equiv c + ja \pmod{n}$ then $ia \equiv ja \pmod{n}$. Since gcd(a, n) = 1 then a can be cancelled to give $i \equiv j \pmod{n}$.

Therefore none of the values $c, c+a, c+2a, \ldots, c+(n-1)a$ are congruent modulo n. As there are n of these values then they form a complete set of residues modulo n.

(iii) (6 marks)

By the Chinese Remainder theorem these equations have a unique solution modulo 3*4*13 = 156.

Integers which satisfy the congruence $x \equiv 7 \pmod{13}$ are 7, 20, 33, ... Integers which also satisfy the congruence $x \equiv 1 \pmod{4}$ are 33, 85, 137, ... Integers which also satisfy the congruence $x \equiv 2 \pmod{3}$ are 137, ...

Therefore the least positive integer which satisfies the linear congruences is 137.

(i) (3 marks)

By FLT,
$$10^{36} \equiv 1 \pmod{37}$$
.
Therefore $10^{75} \equiv (10^{36})^2 * 10^3 \equiv 1^2 * 100 * 10 \equiv -11 * 10 \equiv -110 \equiv 1 \pmod{37}$.

Therefore the least positive residue is 1.

(ii)(a) (4 marks)

$$12x \equiv 1 \pmod{37}$$

$$\Rightarrow 36x \equiv 3 \pmod{37}$$

$$\Rightarrow -x \equiv 3 \pmod{37}$$

$$\Rightarrow x \equiv 34 \pmod{37}$$

By FLT, $12^{36} \equiv 1 \pmod{37}$. Therefore as $12 * 12^{35} \equiv 1 \pmod{37}$ then $12^{35} \pmod{37}$ is also a solution of $12x \equiv 1 \pmod{37}$. As this equation has a unique solution then 34 is equal to the least positive residue of $12^{35} \pmod{37}$.

(ii)(b) (4 marks)

 $12^2x \equiv 144x \equiv 33x \equiv 1 \pmod{37}$ has a solution congruent to $12^{34} \pmod{37}$.

$$12^{2}x \equiv 1 \pmod{37}$$

$$\Rightarrow (36)^{2}x \equiv 3^{2} \pmod{37}$$

$$\Rightarrow (-1)^{2}x \equiv 9 \pmod{37}$$

$$\Rightarrow x \equiv 9 \pmod{37}$$

Therefore 9 is equal to the least positive residue of 12^{34} (mod 37).

(i) (5 marks)

If 2^p - 1 is prime

Since $2^p - 1$ is prime then $gcd(2^p - 1, 2^{p-1}) = 1$ and $\sigma(2^p - 1) = 1 + 2^p - 1 = 2^p$.

$$\begin{split} \sigma(2^{p-1} \ (2^p - 1)) &= \sigma(2^{p-1}) \ \sigma(2^p - 1) \\ &= (2^p - 1) \ 2^p \\ &= 2 \ \{2^{p-1} (2^p - 1)\} \end{split} \qquad \text{as σ multiplicative}$$

A number n is perfect if $\sigma(n) = 2n$. Therefore $2^{p-1}(2^p - 1)$ is perfect if $2^p - 1$ is prime.

If $2^{p-1}(2^p-1)$ is perfect

As
$$2^{p} - 1$$
 is odd then $gcd(2^{p-1}, 2^{p} - 1) = 1$.

$$\sigma(2^{p-1}(2^{p} - 1)) = \sigma(2^{p-1}) \sigma(2^{p} - 1)$$
Since σ is a multiplicative function
$$= (2^{p} - 1) \sigma(2^{p} - 1)$$

$$= 2^{p} (2^{p} - 1)$$
as $2^{p-1}(2^{p} - 1)$ is perfect

This means that $\sigma(2^p - 1) = 2^p$.

As 1 and 2^p - 1 are factors of 2^p - 1 then $\sigma(2^p$ - 1) $\leq 1 + (2^p$ - 1) $= 2^p$. As the equality only holds when 2^p - 1 is prime then 2^p - 1 is prime

Therefore $2^{p-1}(2^p - 1)$ is perfect if and only if 2^{p-1} is prime.

(ii)(a) (2 marks)

110 = 11 * 5 * 2.

$$\sigma(110) = \sigma(11) \ \sigma(5) \ \sigma(2) = 12 * 6 * 3 = 72 * 3 = 216.$$

$$112 = 4 * 28 = 2^4 * 7.$$

 $\sigma(112) = \sigma(2^4) \ \sigma(7) = (2^5 - 1) * 8 = 31 * 8 = 248.$

Therefore only 112 is abundant.

(ii)(b) (4 marks)

If
$$n=4p^2$$
 where p is an odd prime then
$$\sigma(n)=\sigma(2^2)\ \sigma(p^2)=(2^3-1)\ (1+p+p^2).$$

If $4p^2$ is abundant then $7(1 + p + p^2) > 8p^2$. So $p^2 < 7(p + 1)$ or $p < 7 + \frac{7}{p}$.

Therefore $4p^2$ is abundant only for the odd primes 3, 5, or 7.

(i) (3 marks)

The quadratic congruence has solutions if $5^2 - 4 * 2 * 4 = 25 - 32 = -7$

is a quadratic residue of 31.

$$(-7/31) = (24/31)$$
 Th. $2.1(a)$. $-7 \equiv 24 \pmod{31}$
 $= (2^2/31)(2/31)(3/31)$ Th. $2.1(c)$
 $= 1 * 1 * (-1)$ Th. $2.1(b)$, Th. 3.2 and Th. 4.4 .
 $= -1$

Therefore the congruence does not have any solutions.

(ii) (4 marks)

$$(62/139) = (2/139)(31/139) Th. 2.1(c) = (-1) * -(139/31) Th. 3.2 and LQR. 139 = 31 = 3 (mod 4) = (15/31) Th. 2.1(a). 139 = 15 (mod 31) = (-16/31) Th. 2.1(a). 15 = -16 (mod 31) = (-1/31) (4^2/31) Th. 2.1(c). = -1 * 1 Th. 2.1(e) and Th. 2.1(b) = -1$$

(iii) (4 marks)

$$(3/p) = (p/3)$$
 if $p \equiv 1 \pmod{4}$. LQR
= - $(p/3)$ if $p \equiv 3 \pmod{4}$. LQR.

$$(p/3) = (1/3) = 1$$
 $p \equiv 1 \pmod{3}$.
= $(2/3) = -1$ $p \equiv 2 \pmod{3}$.

By the Division Algorithm an odd prime greater than 3 must be of the form 12k+1, 12k+5, 12k+7, 12k+11.

p (mod 12)	p (mod 4)	p (mod 3)	(3/p)
1	1	1	= (p/3) = (1/3) = 1
5	1	2	= (p/3) = (2/3) = -1
7 ≡ -5	3	1	= - (p/3) = - (1/3) = -1
11 ≡ -1	3	2	$= - (p/3) = - (2/3) = (-1)^2 = 1$

Therefore the given result holds.

(i) (4 marks)

$$82 = 1*69 + 13$$

$$69 = 5 * 13 + 4$$

$$13 = 3 * 4 + 1$$

$$4 = 4 * 1 + 0$$

Therefore 82/69 = [1, 5, 3, 4] = [1, 5, 3, 3, 1].

(ii) (7 marks)

Let $\alpha = [0, 2, x]$ where x = [<2, 1>] = [2, 1, x].

The convergents of [2, 1, x] are 2/1, 3/1, (3x + 2)/(x + 1) = x.

So $x^2 - 2x - 2 = 0$ and this has the positive solution $x = \frac{2 + \sqrt{4 + 8}}{2} = 1 + \sqrt{3}$.

The convergents of [0, 2, x] are $0/1, 1/2, x/(2x + 1) = \alpha$.

This gives $[0,2,\langle 2,1\rangle] = \frac{1+\sqrt{3}}{3+2\sqrt{3}} = \frac{(1+\sqrt{3})(3-2\sqrt{3})}{9-12} = \frac{(3-6)+\sqrt{3}(3-2)}{-3} = \frac{3-\sqrt{3}}{3}$.

 $\alpha = [0, 2, 2, 1, 2, 1, 2, 1, <1, 2>].$

Convergents of α are $C_1 = 0/1$; $C_2 = 1/2$; $C_3 = 2/5$; $C_4 = 3/7$; $C_5 = 8/19$; $C_6 = 11/26$; $C_7 = 30/71$.

By Corollary to Theorem 4.1 $\frac{1}{2q_kq_{k+1}} < \left|\alpha - \frac{p_k}{q_k}\right| < \frac{1}{q_kq_{k+1}}$, where $C_k = p_k / q_k$.

When k = 5 we have $|\alpha - C_5| < 1/(19 * 26) < 1/400$.

When k = 4 we have $1/(2*7*19) = 1/(14*19) = 1/266 < |\alpha - C_4|$.

Therefore the 5th convergent 8/19 is the 1st convergent within 1/400 of [0,2,<2,1>]

(i) (4 marks)

Since the cycle length of $\sqrt{11}$ is 2 then every even convergent gives a solution of the Diophantine equation (Th. 1.2).

Convergents of [3, <3, 6>] are $C_1 = 3/1$; $C_2 = 10/3$; $C_3 = 63/19$; $C_4 = 199/60$.

Therefore 2 positive solutions are x = 10, y = 3; and x = 199, y = 60.

$$199^2 = (200 - 1)^2 = 40,000 - 400 + 1 = 39,601$$
. $11 * 60^2 = 11 * 3600 = 39,600$.

(ii) (4 marks)

A primitive Pythagorean triple is of the form $(2mn, m^2 - n^2, m^2 + n^2)$, where m and n are positive integers, m > n, gcd(m, n) = 1, and m and n have opposite parity (Th. 2.1).

As the 2nd and 3rd sides are odd then we must have 2mn = 12.

As mn = 6 then m = 6, n = 1, and m = 3, n = 2 are the only possibilities.

Therefore the only primitive Pythagorean triples are (12, 35, 37) and (12, 5, 13).

Since (4, 3, 5) is a primitive Pythagorean triple then (16, 12, 20) is a non-primitive Pythagorean triple with 12 as a side.

(iii) (3 marks)

Assume that $x = x_1$, $y = y_1$, $z = z_1$ is a solution in positive integers. Therefore $x_1^3 + 9y_1^3 = 3z_1^3$

Since the other 2 terms in the equation are divisible by 3 then x_1^3 is also divisible by 3. Therefore we can write $x_1 = 3x_2$ where x_2 is a positive integer.

Therefore $27x_2^3 + 9y_1^3 = 3z_1^3$. Dividing by 3 gives $9x_2^3 + 3y_1^3 = z_1^3$.

Similarly z_1^3 is also divisible by 3. Therefore we can write $z_1 = 3z_2$ where z_2 is a positive integer. Hence $9x_2^3 + 3y_1^3 = 27z_2^3$. Dividing by 3 gives $3x_2^3 + y_1^3 = 9z_2^3$.

Similarly y_1^3 is also divisible by 3. Therefore we can write $y_1 = 3y_2$ where y_2 is a positive integer. So $3x_2^3 + 27y_2^3 = 9z_2^3$. Dividing by 3 gives $x_2^3 + 9y_2^3 = 3z_2^3$.

Therefore $x = x_2$, $y = y_2$, $z = z_2$ is also a solution of $x^3 + 9y^3 = 3z^3$ with $z_2 < z_1$ in positive integers.

As the descent step has been established then by the method of infinite descent there can be no solution in positive integers.

END OF PART 1 SOLUTIONS