2003 - Number Theory Solutions

[[Comments are written like this.

Please send me (dave@wildd.freeserve.co.uk) details of any errors you find or suggestions for improvements.]]

Question 1

(ii) (4 marks)

$$219 = 2 * 93 + 33$$

$$93 = 2 * 33 + 27$$

$$33 = 1 * 27 + 6$$

$$27 = 4 * 6 + 3$$

$$6 = 2 * 3 + 0$$

Therefore gcd(93, 219) = 3.

$$3 = 27 - 4 * 6 = 27 - 4 * (33 - 27) = 5 * 27 - 4 * 33$$

= $5 * (93 - 2 * 33) - 4 * 33 = 5 * 93 - 14 * 33$
= $5 * 93 - 14 * (219 - 2 * 93) = 93 * 33 + 219 * (-14).$

Therefore solutions of 93x + 219y = gcd(93, 219) are of the form

$$x = 33 + \frac{219}{\gcd(93,219)}t = 33 + 73t \text{ , and } y = -14 - \frac{93}{\gcd(93,219)}t = -14 - 31t \text{ ,}$$

where t is an integer.

[[You could try the following method which uses negative remainders. I do not know whether it is acceptable to the examiners but it is valid and shorter in some cases.

$$219 = 2 * 93 + 33$$

$$93 = 3 * 33 - 6$$

$$33 = 5 * 6 + 3$$

$$6 = 2 * 3 + 0$$

Therefore gcd(93, 219) = 3.

(ii) (3 marks)

Since n has remainder 3 when divided by 6 then n is odd.

As
$$m = 5n + 4$$
 then $gcd(m, n) = gcd(n, 4)$ Euclidean Algorithm
= 1 Since n is odd.

(iii) (4 marks)

For any positive integer n let P(n) be the proposition that 10^{n+1} - 4 is divisible by 12.

P(1) is $10^2 - 4 = 96$ is divisible by 12. As P(1) is true then we have the basis for induction.

Assume P(k) is true for some positive integer k so 10^{k+1} - 4 is divisible by 12.

$$10^{(k+1)+1} - 4 = 10(10^{k+1} - 4) + 36.$$

Since, by assumption, $12 \mid 10^{k+1} - 4$, and $12 \mid 36$ then $12 \mid 10^{(k+1)+1} - 4$.

Therefore if P(k) is true then P(k + 1) is true. This completes the induction step.

The result then follows from the Principle of Mathematical Induction.

Question 2 (11 marks)

Assume there are a finite number of primes of the form 3k + 2, where k is a non-negative integer. Let these primes be $p_1, p_2, ..., p_r$.

Let
$$N = (p_1 p_2 ... p_r)^2 + 1$$
.

If p is of the form 3k + 2 then $p \equiv 2 \pmod{3}$ and $p^2 \equiv 1 \pmod{3}$. Therefore $N \equiv 1^r + 1 \equiv 2 \pmod{3}$. Therefore N is of the form 3k + 2, where k is a non-negative integer.

As N is greater than any of the primes of the form 3k + 2 then it cannot be a prime.

As N is not divisible by 3 then all of its prime factors must be of the form 3k + 1 or 3k+2.

Dividing N by a prime of the form 3k + 2 leaves a remainder of 1 so none of the prime factors can be of this form. Therefore all of the prime factors must be of the form 3k + 1.

If all the prime factors of the form 3k + 1 equal 1 (mod 3) then multiplying them together results in a number equal to 1 (mod 3). Since $N \equiv 2 \pmod{3}$ then all the factors cannot be of the form 3k + 1.

Since the assumption there are a finite number of primes of the form 3k + 2 has lead to a contradiction then the assumption is incorrect. Therefore there are an infinite number of primes of the form 3k + 2.

(i) (2 marks)

Since $n \equiv 3 \pmod{10}$ then n = 10k + 3 for some integer k. Therefore 6n + 1 = 6(10k + 3) + 1 = 60k + 19.

(i)(a)
$$6n + 1 = 60k + 19 \equiv 7 \pmod{12}$$

(i)(b)
$$6n + 1 = 60k + 19 \equiv 4 \pmod{15}$$

(ii) (3 marks)

$$r \ a \equiv r \ b \pmod{r \ n}$$
 \Leftrightarrow $r \ a = r \ b + \alpha \ r \ n$, for some integer α \Leftrightarrow $a = b + \alpha \ n$ \Leftrightarrow $a \equiv b \pmod{n}$, since $n > 0$.

[[I am not sure why they have added the condition n > 1 rather than n > 0. If n = 1 then we have $r \ a \equiv r \ b \ (mod \ r) \Leftrightarrow a \equiv b \ (mod \ 1)$. Both sides are always true.]]

(iii) (6 marks)

Since
$$5x \equiv 7 \pmod{19}$$
 then $4 * 5x = 20x \equiv x \equiv 4 * 7 \equiv 9 \pmod{19}$

By the Chinese remainder theorem the congruences

$$x \equiv 1 \pmod{2}$$
 $x \equiv 6 \pmod{7}$ $x \equiv 9 \pmod{19}$ have a unique solution modulo $2 * 7 * 19 = 266$.

Integers which satisfy the congruence $x \equiv 9 \pmod{19}$ are 9, 28, 47, 66, 85, 104, ... Integers which also satisfy the congruence $x \equiv 6 \pmod{7}$ are 104, 237, ... 237 also satisfies the congruence $x \equiv 1 \pmod{2}$.

Hence 237 is the unique solution modulo 266.

Therefore the least positive integer which satisfies the congruences is 237.

(i) (3 marks)

By FLT,
$$7^{16} \equiv 3^{16} \equiv 1 \pmod{17}$$
.

Therefore
$$7^{20} + 3^{20} \equiv 7^4 + 3^4 \equiv 49^2 + 81 \equiv (-2)^2 - 4 \equiv 0 \pmod{17}$$
.

Hence $7^{20} + 3^{20}$ is divisible by 17.

(ii) (3 marks)

If p is a prime less than 19 then p divides 18!. Therefore p does not divide 18! + 1 since there is a remainder of 1.

Since 19 is a prime then by Wilson's Theorem $(19 - 1)! = 18! \equiv -1 \pmod{19}$. As $18! + 1 \equiv -1 + 1 \equiv 0 \pmod{19}$ then 18! + 1 is divisible by 19.

Therefore 19 is the smallest prime divisor of 18! + 1.

(iii) (5 marks)

(ii)(a)

As 23 is a prime, then by Theorem 2.2 the length of the cycle in decimal of 1/23 is equal to the order of 10 (modulo 23). Therefore $10^{22} \equiv 1 \pmod{23}$.

As $10^{22} \equiv (10^{11})^2 \equiv 1 \pmod{23}$. Therefore $10^{11} \equiv \pm 1 \pmod{23}$. If $10^{11} \equiv 1 \pmod{23}$ then the order of 10 would be 11. Since the order of 10 is 22 then we must have $10^{11} \equiv -1 \pmod{23}$.

(ii)(b)

As 10 has order 22 then it is a primitive root of of 23. Therefore 5/23 has the same cycle starting at a different point.

As 5 * 043 = 215 then the cycle starts at 21. Therefore the recurring decimal of 5/23 is 0.<2173913043478260869565>.

(i) (4 marks)

If p is a prime and a is a positive integer then $\phi(p^a)$ in the number of integers not exceeding p^a which are relatively prime to p^a .

The p, 2p, 3p, ..., (p^{a-1}) p are the only integers not relatively prime to p^a . As there as p^{a-1} of these then $\phi(p^a) = p^a - p^{a-1} = p^a \left(1 - \frac{1}{p}\right)$.

Any integer n > 1 can be written as a product of primes.

Let $n = p_1^{a_1} p_2^{a_2} p_r^{a_r}$, where the primes $p_1, ..., p_r$ are distinct, and the a_i (i = 1 to r) are positive integers.

As ϕ is a multiplicative function then

$$\begin{split} \varphi(n) &= \, \varphi \Big(p_1^{a_1} \, \Big) \! \varphi \Big(p_2^{a_2} \, \Big) ... \varphi \Big(p_r^{a_r} \, \Big) = \, p^{a_1} \, \Big(1 - \frac{1}{p_1} \Big) p^{a_2} \, \Big(1 - \frac{1}{p_2} \Big) ... \, p^{a_r} \, \Big(1 - \frac{1}{p_r} \Big) \\ &= \, n \prod_{p \mid p} \Big(1 - \frac{1}{p} \Big). \end{split}$$

(ii)(a) (2 marks)

If $n = p^2$, where p is a prime, then $\sigma(n) = 1 + p + p^2$.

So $2n + \sigma(n) = 1 + p + 3p^2$. As this is divisible by 3 then $1 + p \equiv 0 \pmod{3}$.

Hence $p \equiv 2 \pmod{3}$.

(ii)(b) (2 marks)

If $n = p^3$, where p is a prime, then $\sigma(n) = 1 + p + p^2 + p^3$.

So $2n + \sigma(n) = 1 + p + p^2 + 3p^3$. As this is divisible by 3 then $1 + p + p^2 \equiv 0 \pmod{3}$.

Therefore $p \equiv 1 \pmod{3}$ and hence $p \equiv 1 \pmod{6}$ or $p \equiv 4 \pmod{6}$.

If $p \equiv 4 \pmod{6}$ then p is divisible by 2 and hence not prime.

Therefore $p \equiv 1 \pmod{6}$.

[[I found this tricky. I originally thought there was a misprint on the exam paper.]]

(ii)(c) (3 marks)

We have to consider the prime p = 2 separately from all the others.

If p=2 then $n=2^4$ and $\sigma(n)=2^5$ - 1. Therefore $2n+\sigma(n)=32+31=63$. Therefore p=2 is possible.

If $p \neq 2$ then $\sigma(n) = \sigma(2) * \sigma(p^3) = 3 \sigma(p^3)$. Therefore if $2n + \sigma(n) = 4p^3 + 3 \sigma(p^3)$ is divisible by 3 then $3 \mid 4p^3$. Therefore p = 3.

Therefore p = 2 or 3 are the only possible primes.

(i) (4 marks)

The quadratic congruence has solutions if $(-5)^2$ - 4 * 2 * 4 = 25 - 32 = -7 is a quadratic residue of 19.

$$(-7/19) = (12/19)$$
 Th. 2.1(a), $-7 \equiv 12 \pmod{19}$
= $(2^2/19)(3/19)$ Th. 2.1(c).
= $1 * (-1) = -1$ Th. 2.1(b), and Th. 4.4.

Therefore the congruence does not have solutions.

(ii) (4 marks)

$$(86/127) = (2/127) (43/127) Th. 2.1(c).$$

$$= 1 * \{-(127/43)\} Th. 3.2, LQR. 127 \equiv 43 \equiv 3 \pmod{4}.$$

$$= -(-2/43) Th. 2.1(a). 127 \equiv -2 \pmod{43}.$$

$$= -(-1/43) (2/43) Th. 2.1(c).$$

$$= -\{-1 * (-1)\} = -1 Th. 2.1(e). Th. 3.2.$$

(iii) (4 marks)

If p = 2 or p = 3 then (6/p) is not defined (Definition 2.1)..

If
$$p \ge 5$$
 then $(6/p) = (2/p) (3/p)$ Th. 2.1(c).

If (6/p) = 1 then either (2/p) = (3/p) = 1, or (2/p) = (3/p) = -1.

Case 1.
$$(2/p) = (3/p) = 1$$

If (2/p) = 1 then $p \equiv \pm 1 \pmod{8}$. If $(3/p) \equiv 1$ then $p \equiv \pm 1 \pmod{12}$. As lcm(8, 12) = 24 then we consider values of p modulo 24. The values which satisfy both equations are 1 and 23 (mod 24).

Case 2.
$$(2/p) = (3/p) = -1$$

If (2/p) = -1 then $p \equiv 3$ or 5 (mod 8). If $(3/p) \equiv 1$ then $p \equiv 5$ or 7(mod 12). As lcm(8, 12) = 24 then we consider values of p modulo 24. The values which satisfy both equations are 5 and 19 (mod 24).

Therefore (6/p) = 1 when $p \equiv \pm 1 \pmod{24}$ or $p \equiv \pm 5 \pmod{24}$.

(i) (2 marks)

$$113 = 2 * 48 + 17$$

$$48 = 2 * 17 + 14$$

$$17 = 1 * 14 + 3$$

$$14 = 4 * 3 + 2$$

$$3 = 1 * 2 + 1$$

$$2 = 2 * 1 + 0$$

Therefore 113/48 = [2, 2, 1, 4, 1, 2] = [2, 2, 1, 4, 1, 1, 1].

(ii) (3 marks)

Using Theorem 1.2 and Corollary 1.2 we have

and so the first 4 convergents are $C_1 = 1/1 = 1$; $C_2 = 3/2$; $C_3 = 10/7$; and $C_4 = 43/30$.

 $q_5 = 5 * 30 + 7 = 157$. Therefore, using Theorem 2.1, we have

$$|x - C_4| < 1/(q_4 q_5) = 1/(30 * 157) = 1/4710.$$

(iii) (6 marks)

Corrections by Peter Monk (8/10/05)

Let
$$y = [2, 2, x]$$
 where $x = [<3>] = [3, x]$.

The convergents of [3, x] are 3/1, (3x + 1)/x = x.

So
$$x^2 - 3x - 1 = 0$$
 and the positive solution is $x = \frac{3 + \sqrt{9 + 4}}{2} = \frac{3 + \sqrt{13}}{2}$.

The convergents of [2, 2, x] are 2/1, 5/2, (5x + 2)/(2x + 1) = (10x + 4)/(4x + 2) = y.

$$\begin{split} & [2,\,2,\,<\!3>] = y \\ & = \frac{19 + 5\sqrt{13}}{8 + 2\sqrt{13}} = \frac{\left(19 + 5\sqrt{13}\right)\!\left(\!8 - 2\sqrt{13}\right)}{64 - 52} = \frac{\left(152 - 130\right) + \sqrt{13}\left(40 - 38\right)}{12} = \frac{11 + \sqrt{13}}{6} \,. \end{split}$$

(i) (7 marks)

(i)(a)

 $490 = 2 * 5 * 7^2$. Since no factor of the form 4k + 3 occurs to an odd power then 490 can be expressed as the sum of 2 squares (Th. 4.3) or 3 squares (add 0^2).

 $492 = 4 * 123 = 2^2 * 3 * 41$. Since a factor of the form 4k + 3 occurs to an odd power then 492 cannot be expressed as the sum of 2 squares (Th. 4.3).

Since 492 is not of the form 4^n (8m + 7) for some integers $m,n \ge 0$ then 492 can be expressed as a sum of 3 squares (Theorem 4.4).

 $496 = 16 * 31 = 4^2 * 31 = 4^2 * (8 * 3 + 7)$. Therefore, by Theorem 4.4, 496 cannot be expressed as a sum of 3 squares. It follows that it cannot be expressed as a sum of 2 squares.

(i)(b)

$$490 = 10 * 49 = (3^2 + 1^2) * 7^2 = 21^2 + 7^2$$
.

(ii) (4 marks)

Assume there is a solution $x = x_1$, $y = y_1$, and $z = z_1$.

Therefore $4x_1^3 - 2y_1^3 = z_1^3$. As the two of the terms in the equation are divisible by 2 then the 3^{rd} term must also be divisible by 2. Since $2 \mid z_1^3$ then $2 \mid z_1$. Therefore $z_1 = 2 z_2$ where z_2 is an integer.

Hence $2x_1^3 - y_1^3 = 4z_2^3$. Similarly $2 \mid y_1$ and so $y_1 = 2y_2$ where y_2 is an integer.

Hence $x_1^3 - 4y_2^3 = 2z_2^3$. Similarly $2 \mid x_1$ and so $x_1 = 2x_2$ where x_2 is an integer.

Hence $4x_2^3 - 2y_2^3 = z_2^3$. As we have found another solution with $x_2 < x_1$, $y_2 < y_1$, and $z_2 < z_1$ then the descent step is complete. Hence the method of infinite descent shows can be no solutions in the positive integers.

END OF NUMBER THEORY SOLUTIONS