MS221 – 2002 Solutions

Qn.2 (a) curve is
$$\frac{(x-3)^2}{9} + \frac{y^2}{1} = 1$$

which is an ellipse in standard form.

- (b) centre is at (3,0), axis length are 6 and 2.
- (c) x-axis : Solve vs. y=0 to give x=0 or 6 y-axis: Solve vs. x=0 to give y=0

Qn.3.
$$\cos 2x = 1 - 2\sin^2 x$$
, so

$$\frac{\sqrt{3}}{2} = 1 - 2\sin^2(\frac{\pi}{12})$$
 leading to

$$\sin(\frac{\pi}{12}) = \sqrt{\frac{1}{2}\left(1 - \frac{\sqrt{3}}{2}\right)}$$

Qn.4 (a) $u_2 = 6(2) - 9 = 3$

 $\overline{\text{(b) Solve }}$ r²-6r+9=0 to give r=3 as a double

General solution is $u_n = (A + Bn)(3^n)$

Use
$$u_0$$
 and u_1 : $A = 1$

$$3A + 3B = 2$$

Solve to give A = 1, B = -1/3, so closed form

is
$$u_n = (1 - \frac{1}{3}n)(3^n)$$
 (n=0,1,2,..)

Qn.5 (a)
$$(3-2x)^4 =$$

 $81+4.27(-2x)+6.9.(-2x)^2+4.3(-2x)^3+(-2x)^4$
 $= 81 - 216x + 216x^2 - 96x^3 + 16x^4$

Qn.6 (a) (0,1] and $(-\infty,\infty)$ (Note that

since $\frac{\pi}{2}$ is in the domain, the image set

(b) (0,1] is within the domain $(0,\infty)$ of g so g o f can be formed.

(c)
$$g \circ f : (0, \pi) \to (-\infty, 0]$$

 $x \mapsto \ln(\sin x)$

Qn.7 (a) eigenlines are
$$\begin{pmatrix} 5 & 4 & 5 \\ 2 & -6 - 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

and $\begin{pmatrix} 5 - (-5) & -5 \\ 2 & -6 - (-5) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$

that is x = 5y and 2x = y.

(b) points remain on the line x=5y, moving progressively further out by a multiple of 4 for each iteration, i.e. (20,4), (80,16) etc.

(a)
$$\begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix} = \begin{pmatrix} 3 & -8 \\ 4 & 6 \end{pmatrix}$$

- (b) (0,0), (3,4), (8,6), (5
- (c) f: scaling (by factors (5,10)), g: rotation (by $tan^{-1}(4/3)$ about 0)

Qn.9 (a)
$$f'(x) = \frac{e^{7x}(7x-2)}{x^3}$$

(b)
$$g'(t) = \frac{1/2\sqrt{t}}{\sqrt{1-t}} = \frac{1}{2\sqrt{t(1-t)}}$$

$$\frac{1}{4}x\sin(4x) - \frac{1}{4}\int\sin(4x)dx = \frac{1}{4}x\sin(4x) + \frac{1}{16}\cos(4x) + c$$

(b)
$$u = \ln x$$
; $du = (1/x) dx$

Integral =
$$\int u du = \frac{1}{2} (\ln x)^2 + c$$

Qn.11(a)
$$f(x) = 2x + \frac{2x^3}{3} + \frac{2x^5}{5} + \frac{2x^7}{7}$$

(b)
$$f'(x) = 2 + 2x^2$$

Qn.12 (a)
$$e^{-3y} dy = dx$$

Integrate
$$-\frac{1}{3}e^{-3y} = x + k$$

Solution:
$$e^{-3y} = -3x + c$$
 that is $y = -(\ln(-3x+c))/3$

(b) At x=0,y=1 so -3+c=1, i.e. c=4so particular soln. is $y=-(\ln(4-3x))/3$

Qn.13 (a)
$$< 1, 3\pi/4 >$$

(b)
$$< 1, \frac{\pi}{4} >, < 1, \frac{11\pi}{12} >, < 1, \frac{19\pi}{12} >$$

On.14 (a)
$$11^2 = 121 = 2 \pmod{17}$$

On.14 (a)
$$11^2 = 121 = 2 \pmod{17}$$

(b) $11^7 = 11^4$. 11^2 . $11 = 4.2.11 \pmod{17}$
= 88 (mod 17) = 3

Qn.15 (a)
$$d*b=c, f*d=b$$

- (b) c beca₆se c row in table is the same as the column headings.
- (c) $a^{-1} = f$, $d^{-1} = b$
- (d) (\mathbf{Z}_6 , $+_6$) since there are just two selfinverse elements, namely c and e.

Qn.16 (a)
$$a(n) \wedge b(n)$$

(b) any odd multiple of 42, e.g. 42

(c) (i)
$$d(n) \Rightarrow (a(n) \land c(n))$$

(ii) If n is divisible by 84 then n is divisible by 7 and is also divisible by 42.

Qn.17 (a) New eqn. is $(y-1)^2=12(x+2)$

which simplifies to the eqn. Q.

(b) focus: (1,1) directrix: x=-5, axis of symmetry: y=1.

(c) x axis: Solve Q vs. y=0 to give x=23/12

y-axis : Solve Q vs. x=0 to give

$$y = 1 \pm \sqrt{1 + 23} = 1 \pm \sqrt{24}$$

(e) t = (y-7)/6 so $x = ((y-7)^2)/12 + (y-7)+1$ multiply by 12:

12x =
$$y^2$$
-14y+49 +(12y-84)+12
i.e. y^2 -2y-12x+23=0

Qn.18 (2002 students) (a) Find where the curve meets the line y = x. (b) Solve $-x^2 + 2x + 1 = x$, i.e. $x^2 - x - 1 = 0$. Solutions are

(b) Solve
$$-x^2 + 2x + 1 = x$$
, i.e.

$$x^2 - x - 1 = 0$$
 Solutions are

$$x = \frac{1}{2} (1 \pm \sqrt{5}) = 1.618$$
 or -0.618

(c) gradient of $-x^2 + 2x + 1$ is -2x + 2 which exceeds 1 in absolute value at both 1.618 and -0.618 so both fixpoints are repelling.

(d) (i) 2, 1, 0

(ii) values 1 and 2 show that there is a twocycle (1,2) and 0 shows it is super-attracting. (e) (i) 1.06, 2.00

(ii) a two-cycle between 1 and 2.

$$\frac{1}{\int \frac{x dx}{1+x^2}} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln u = \frac{1}{2} \ln(1+x^2) + c$$

(b) Using integration by parts, integral =

$$x \arctan x - \int \frac{xdx}{1+x^2} = x \arctan x - \frac{1}{2} \ln(1+x^2) + c$$

(c) in above expression put x=1:

$$\frac{\pi}{4} - \frac{\pi}{4} - \frac{1}{2}\ln(2) + c$$

so $c = \frac{1}{2} \ln(2)$ and solution is

x arctan $x - \frac{1}{2} \ln(1 + x^2) + \frac{1}{2} \ln(2)$ that is

$$y = x \arctan x + \frac{1}{2} \ln \left(\frac{2}{1 + x^2} \right)$$

(d) $y(0) = \frac{1}{2} \ln(2)$

$$y'(x) = arctan x$$
 $y'(0) = 0$

$$y \cdot (x) = \frac{1}{1+x^2}$$
 $y \cdot (0) = 0$

Taylor series is $\frac{1}{2} \ln(2) + \frac{1}{2} x^2$

Qn	.20	(a)(i)

_ ` ′				
	1	4	13	16
1	1	4	13	16
4	4	1б	1	13
13	13	1	16	4
16	16	13	4	1

(ii) it satisfies closure:

there exists an identity element 1 every element has an inverse, viz:

the operation is associative since multiplication in general is associative.

(b) (i) I: identity

H: half-turn

P : reflection about y = x

Q : reflection about y = -x

group table is:

IHPQ

HIQP

PQIH

QPHI

(c) no – one has two identity elements on the diagonal, the other has four.