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(1)  You should attempt as many gquestions as vou can in this part.
(ii} Each question in this part carries 8 marks.

Question 1

Determine each of the following complex numbers in Cartesian form. simplifying
vour answers as far as possible.

fa) (1<%
(L) cosim = flog, 2)

fc) {—e)”

Question 2

Let A={z:1<|:-7/<2}and B= {z:~=/4 < Argz < 7/4}.
(a) Make separate sketches of the sets 4 and B.

(b) For each of the sets 4. B and C = ext 4

(1) state whether or not it is a region. and if it is not a region. then explain
why not:

(1) state whether or not it is compact. and if it is not compact. then explain
why not.

Question 3

ia) Evaluate

/ Inizd:.
r

where T s the line segment from 7 to 1.

(b) Determine an upper estimate for the modulus of

/33’—1 X
C:2—1 o

where C is the circle {z:1z] = 2}.

Question 4

(a} Evaluare the following integrals. where C is the circle with centre : and radius 2.
Nane any standard results that vou use and check that their conditions hold.

€7
(1} / d:
C.:'f'l

1z

[ €
(1 -/h:_gd-

th) Use Liouville’s Theorem to establish that there is & complex number = such
that

23

)] > 100.
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(a) Find the residues of the function

at each of the poles of f.

(b) Hence evaluate the integral
2=
cost
[
o0 9 —4dcost

Question 6
(a) Use Rouché’s Theorem to show that the equation
2:3-5:-1=0

has three solutions inside the circle C) = {z:]z/ = 2}. exactlv one of which
lies inside the circle Cy = {z:!:' = 1},

(bj Show that the solution inside Cs is real and positive.

Question 7
Letg(z) =1z be a velocity function.
(a) Explain why g represents a model fiuid flow on C.

(b) Determine a stream function for this flow Hence find the equations of the
streamblines through the points 7 and 1+ i. and sketch these streamlines indi-
cating the direction of flow.

tc) Determine the fiux of ¢ across the path I'. where

Fisiti=(1+0t (te[1.2).

Question 8
(a) Show that 1 is an indifferent fixed point of the function
flz)=2" -2 =0
{b) Show that
(v the pomt 1 =/ does nor lie 1n the Mandelbrot set:
V3

9 .
(1) the point T T does lie in the Mandelbrot set.
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(i) You should attempt at most TWO questions in this part.
(ii) Each question in this part carries 18 marks.

Question 9
(a) Let f be the function
f{z)=z(1+3).

(i) Write f(r +1y) in the form u(z.y) + 1v(1.y). where u and v are
real-valued functions.

(ii) Use the Cauchy-Riemann equations to show that f is differentiable at 0.
but not analvtic there.

(iii) Evaluate f'(0). (8]
(b) Let g be the function g(z) = z3.
(i) Show that g is conformal at i.
(ii) Let Ty and T'; be the paths
Fiomtty=¢€¥ (2 e€]0.27)),
Fatmatt)y =t (t€R)
Show that I} and I'> meet at the point i. and sketch I'; and T on the
same diagram.
(iii) Describe the effect of ¢ on a small disc centred at 7 and hence make a
sketch showing the approximate directions of the paths ¢9(T")) and g(T2)
near the pownt g(1). [10]

Question 10

Let f be the function

P P
= sinz’
(a) Show that the Laurent series about 0 for f is
z 1., T
—-=1'—Z'+—Z.‘"". 0 = .
xS lts 3655 foro< |zl <=

Hence evaluate the integral

1
/ - d:.
o sTsinc

where C is the unit arcle {=:|z| = 1}. (7]

(b) Write down the domain 4 of f. Use the Uniqueness Theorem to show that f
1s the only analyvtic function with domain A4 such that

fayr = fory > 0. (5]

sinhy’
(¢} Show that f has singularities at points of the form k=. k € Z. and classify
these singularities
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(c)

Find the residues of the function

7 cot 7z
f& =gy
at each of the points 0. 2. — .. (6]

Hence determine the sum of the series

o

1 o
e | 18]

n=]

Use vour result from part (b} to prove that

o

1

w97 41 = .iizco_th % 4]

Question 12
{a) Determine the extended Mobius transfgrmation fl which maps 0 to 0.

o toland1+7tooc. Hence calculate f; (1(1+1)). (3]
(b) Let Dy={z:jz:-1/<1}.Da={z:lz=ij<1}. R= D, N Ds.

S={z:37/4 < Argy. 51 < 57/4} and T = {u:Rew > 0. Imu > 0}.

(i) Sketch the regions R, £ and T.

(i) Show that f,(R) = S.

(iii) Hence determine a conformal mapping f from R to T.

{1v') Obrain a formula for the inverse function of f. [15]

[END OF QUESTION PAPER|

M337 /P 5






