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Question 1
(@)  (2-2i)"=(-8i)*=-64.
(b) 8i= 8(c0s§+isingj
The principal cube root is (Unit A1, Section 3, Para 4)
g!/3 (cos[l [ED +1 sin(l(ﬁjn =2 {£+11J = \/§+ i
3 2 312 2 2
(¢)  Log(l-i)= log,(|1-i )+iArg1-i) =log, ﬁ—%i (Unit A2, Section 5, Para. 1)
(d) (-1)'i =exp(-1 Log (-1)) (Unit A2, Section 5, Para. 3)
=exp (-1 {loge |-1] +1 Arg (-1)})  (Unit A2, Section 5, Para. 1)
=exp (-1{0 + in}) = exp(m)
Question 2
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(b)(i) A is not a region as it is not open.
B is a region.
C is not a region as it is not connected.
(b)(ii) A is compact.

B and C are not compact as they are neither closed or bounded.
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Question 3
(@)

(a)(1) The standard parametrization for the line segment I is (Unit A2, Section 2,
Para. 3)

y(t)=(1-t)i+2t (te[0,1])
(a)d) z=(1-t)i+2t, Rez=2t, dz=(2-1)dt.

Since y is a smooth path then (Unit B1, Section 2, Para. 1)

IrRezdz:j2t(2—i)dt —(-1)i?] =2-i.

(b)
The length of Tis L =v2% +12 =4/5 .

Using the Triangle Inequality (Unit A1, Section 5, Para. 3b) then, for z € I', we have

Using the Backwards form of the Triangle Inequality (Unit A1, Section 5, Para. 3¢)
then, for z € I', we have

‘9+22‘2‘|9|—‘22H2|9—4|:5

Therefore M = forzeT.

f(Z) _ CoSz

is continuous on € — {-3i, 3i} and hence on the line I'.
9+z

Therefore by the Estimation Theorem (Unit B1, Section 4, Para. 3)

J.r f(z)dz

SML:%*\E:

Nk
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Question 4
(@)

Let 2 be the simply-connected region {z: |z| < 2}. C is a closed contour in 2, and
f(z) =—PZ_ is analytic on 2.
(3-2)’

By Cauchy’s Theorem (Unit B2, Section 1, Para. 4)

(b)

Let 2be the simply connected region C. Ris a simply-connected region and C is a
simple-closed contour in R. As exp(3-z) is analytic on 2 then by Cauchy’s Integral
Formula (Unit B2, Section 2, Para. 1)

J‘C exp(3—Z) dz = 2ni*exp(3 - 0) =2me’i.
z

(©

Let 2be the simply connected region C. Ris a simply-connected region and C is a
simple-closed contour in R. As f(z) = exp(3-z) is analytic on 2then by Cauchy’s n'th
Derivative Formula (Unit B2, Section 3, Para. 1) with n =2 and o = 0 we have

I —exp(3 ~2) dz = 2m, f(z)(O)
. .

z 2!

f(l)(z) = —exp(3 - z) and f(z)(z) = exp(3 —z) SO J.c %;Z)dz =ne’i

z
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Question 5
(a)
72°= —1=¢"". Therefore z° + 1 has zeros at z=e"", ¢" =-1, and &™° = ™",

Therefore f has simple poles at these points.
Let g(z) =1 and h(z) =2z’ + 1. Then h'(z) = 32%.

If a is one of the poles then g and h are analytic at a, h(a) = 0, and b (o) =30’ 0.
Therefore by the g/h rule (Unit C1, Section 1, Para. 2)

Res(f,e“i/3): L _ 1 -2nis3
3621':1/3 3

Res(f,~1)= %

. 1 1 5
Res(f,e n/3): - _ 12
3e* et 3

(b)
I shall use the result given in Unit C1, Section 3, Para. 8.
Letp(t)=1, q(t) =t> + 1.

p and q are polynomial functions such that the degree of q exceeds that of p by at least
2, and the pole of p/q on the real axis is simple. Therefore

Tl o
J 3 dt =2miS+mT
t°+1

where S is the sum of the residues of f at the poles in the upper half-plane, and
T is the sum of the residues of f at the poles on the real axis.

As S = Res(f, ¢™) and T = Res(f, -1).

@© —27i/3
J' 31 dt = 2mi| +ni[lj
t7 +1 3 3

—00

3 3

2_{ ! ﬁi}zﬁn

302 2

[[ As it is a real integral we expect the imaginary terms to cancel]]
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Question 6

(a)(i) Let gi(z)=z2".

For z € C, then, using the Triangle Inequality (Unit A1, Section 5, Para. 3),
| f(z) — gi(2) | = |-32° +1| < |-32°) + |i| =24+ 1<32=]g(2)|.

As f'is a polynomial then it is analytic on the simply-connected region R = C. Since
C, is a simple-closed contour in R then by Rouché ’s theorem (Unit C2, Section 2,

Para. 4) f has the same number of zeros as g; inside the contour C;. Therefore f has 5
zeros inside C;.

(a)(ii) Let gy(z) =-37".
On the contour C, we have, using the Triangle Inequality,
f2)-@(2) | =2 +i| < |2+ ]| =1+1<3=| ()|
As C, is a simple-closed contour in R then by Rouché’s theorem f has the same
number of zeros as g, inside the contour C,. Therefore f has 3 zeros inside C,.

(b)

From part(a) f(z) has 2 solutions in the set {z: 1 < z <2 }. Therefore we have to
find if there are any solutions on C,.

From part (a), on C, we have |z° +1|<?2.

Therefore, using the Backwards form of the Triangle Inequality (Unit A1, Section 5,
Para. 3c)

f(z)| = | |-32°| - |2° +i|| = |3 -2| =1, on C,.

As f(z) is non-zero on C, then there are exactly 2 solutions in the set {z: 1 <z <2 }.
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Question 7

(2)

The conjugate velocity function q(z) =1/z>.
As q is a steady continuous 2-dimensional velocity function on the region C — {0} and
q is analytic on C— {0} then q is a model fluid flow (Unit D2, Section 1, Para. 14).

(b) OnC- {0}, Q(z) = ! is a primitive of q. Therefore Q is a complex potential
z

function for the flow (Unit D2, Section 2, Para. 1).

The stream function ¥(x,y)=ImQ(z) (Unit D2, Section 2, Para. 4)

= Im(— ! - ] , Where z = x + 1y, (x,y) # (0, 0)
X +1y

X —1y y
:Im[_ 2 2)2 2 2
X +y X" +y

A streamline through the point 2i satisfies the equation
Y _—w(02)=L  (Unit D2, Section 2, Para. 4)

2 2
X" +y
Therefore the streamline through i has the equation x* + y* — 2y = 0 or
x? + (y —1)2 =1

Since q(21) = -1/4 (-x direction) then the direction of flow is as shown.

(©

The flux of q across the unit circle C = {z : |z| = 1}is (Unit D2, Section 1, Para. 10)

Ich a(z)dz): ImUC LZ dzj =0 by Cauchy’s Residue Theorem or the n™
z

Derivative formula (Unit B4, Section 3, Para. 1).
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Question 8

(2)

If « is a fixed point then f(o)=o*-2x+ 2=« (Unit D3, Sect. 1, Para 3).
As o -3x+2 =(x-1)(x-2)=0 then there are fixed points at 1 and 2.

f(z) =2z-2.

As f(1) =0 then I is a super-attracting fixed point (Unit D3, Sect. 1, Para. 5).
Asf (2) =2 then 2 is a repelling fixed point.

(b)(1) [[From the diagram in Handbook looks as if point not in Mandelbrot set.]]

P.(0)=—4(3+

P2(0)=1(3+i) L (3+i) = (2+2i)- L (3+i) = L+i

P0)= (L +if ~L(3+i)= (-2 +i)-L(3+i)=-2 +1i.

As ‘ P’ (0) ‘ > 2 then ¢ does not lie in the Mandelbrot set (Unit D3, Section 4, Para. 5).
(b)(ii)

Since |c+1| :| +i | <+ then P has an attracting 2-cycle (Unit D3, Section 4, Para. 9).
Therefore ¢ belongs to the Mandelbrot set (Unit D3, Section 4, Para. 8).
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Question 9

(2)
(@)(1)

f(z)=zRe z—i—|z|2 =(x +iy)x + (x2 +y? ): u(x,y)+iv(x,y),
where u(x,y) = 2x% + yz, and v(x,y) = xy.

(a)(ii)

al % (e )=2y. P (ey)ey, D)=
Sely)=a, Toy)=2y, Sly)=y, Sy

If f is differentiable then the Cauchy-Riemann equations hold (Unit A4, Section 2,
Para. 1). If they hold at (a, b)

@(a,b)=4a=a:@(a,b), and
ox oy

ov ou
&(a,b)zb:—Zb:—g(a,b)

Therefore the Cauchy-Riemann equations only hold at (0, 0).

As fis defined on the region C, and the partial derivatives %, ,%,

2|2
2|2

1. existon C

2. are continuous at (0, 0).

3. satisfy the Cauchy-Riemann equations at (0, 0)
then, by the Cauchy-Riemann Converse Theorem (Unit A4, Section 2, Para. 3), fis
differentiable at 0.

As the Cauchy-Riemann only hold at (0, 0) then f is not differentiable on any region
surrounding 0. Therefore f is not analytic at 0. (Unit A4, Section 1, Para. 3)

(a)(iii)

0 . OV
(0, 0)= i(o,o)ﬂa (

X

0,0)=0 (Unit A4, Section 2, Para. 3).
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(b)

(1) Since g is a polynomial then g is entire (Unit A4, Section 1, Para. 7) and
g/ (z) =2z on C. As g(z) # 0 when z # 0 then g is conformal on C — {0} (Unit
A4, Section 4, Para. 6).

(i)  Asgis analytic on € and g’ (2i) # 0 then a small disc centred at 2i is mapped
approximately (Unit A4, Section 1, Para. 11) to a small disc centred at g(2i) =-4 + 3 =
-1. The disc is rotated by Arg (¢/(2i)) = Arg 4i = /2, and scaled by a factor | g'(2i)| =
4.

(iv)

2 (17 1 2

’

™ (zer) (0=, (Weln(t) fori=1,2.
As g(z) =2z then when v,(t)=0, (goy;)(0)=0 (i=1,2).

As the paths at z = 0 are not at right-angles then g is not conformal at 0.
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Question 10

(a)

(a)(i) f has simple poles at z=0 and z = 3.

.. 9 3
(a)(i1) f(z) = Z(Z_3) == 3)
3 (z)"
]
since z/3|<1on {z:0<|z| <3} (Unit B3, Section 3, Para. 5)

Hence the required Laurent series about 0 is

3(z Y3z 2 ()7
: 222 (2] -

n=0

9 9 1 9 1
@G 1) = S s b

oy {z[ij}

since [3/(z-3)|<1on {z:|z-3|>3} (Unit B3, Section 3, Para. 5)

Therefore the required Laurent series about 3 is




M337 (Complex Analysis) 2005 SOLUTIONS Page 11

(b)

(b)(1) By the Composition Rule (Unit B3, Section 4, Para. 3) the Taylor series for g
about Oon C is

4
=l—2{z2 —%+...}+{§z4 —...}:1—222 +§z4 —... up to the term in z".

Since g is analytic on C then by Taylor’s Theorem (Unit B3, Section 3, Para. 1)
then the representation of g is unique on all open discs centred at 0 in the sense that if

o(z)=a,2"

n=0
then the coefficients a, are those found above.

Let f(z) = g(1/z). f1is analytic on the punctured disc C - {0} which contains the circle
C centred at 0.

The Laurent series about 0 for f on this disc is

using Laurent's Theorem (Unit B4, Section 2, Para. 5) then

f 26(1/ 2)iz = I Lwl)dw = 2nia_,= —4ni
C CW_

and Iczzg(l/z)dz - j f(v_vz) dw =2mia_;=0.
cw
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Question 11

(@)(1)

Putting z = x + iy where x, y € R then
exp(iz) = exp(ix — y) = ¢”(cos X + i sin x)

Since | exp z | = e"°* (Unit A2, Section 4, Para. 2b) then
| exp(iz) | = exp (e”cos x)
(a)(ii)
Let f(z)=exp(e?) and R={z: -n<Rez<m, -1<Imz<1}.

As fis analytic on the bounded region R and continuous on R then by the Maximum
Principle (Unit C2, Section 4, Para. 4) there exists an o € OR such that | f(z) | <| f(o) |
forze R.

From part (i) we have | exp(iz) | = exp (e”cos X).

As e”cos x is real and exp is a monotonic function for real values we need to find the
maximum of €”cos x on dR. €” is a maximum when y = -1 and cos x is a maximum
when x = 0. These values can be attained simultaneously on OR.

Therefore max { exp(eiz) :-t<Rez<m -1<Imz<1}=¢"

The maximum only occurs when z = -i as at all other points in R either
e <e' or cosx<1.
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(b)

Let D= {z: |z| <4} and Dy = {z: |z| > 4}.
Since Dr U Dy = J then f and g are not direct analytic continuations of each other.

on Dy, where Dy, = C — {4}.

Let h(z)= 44

—Z

When z € Dy then |z|/4 <1 and the geometric series z&j is convergent and has

n=0
the sum

= . (Unit B3, Section 3, Para. 5)

Since f = h when z € Dy < Dy U Dy, then h is an analytic continuation of f.

When z € D, then 4/|z| <1 and the geometric series E (ij is convergent and has
Z
n=0

the sum

0

Therefore —Z[ij :—iZ[ij - 44 when z € D,

n=l z n=0 z z

Since g =h when z € D, € D, U Dy, then g is an analytic continuation of h.

Since (f, D), (g, Dy), (h, Dy,) form a chain then f and g are indirect analytic
continuations of each other.
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Question 12

(2)

Using the formula for a transformation mapping points to the standard triple (Unit D1,
Section 2, Para. 11) then the Mobius transformation fl which maps i, /2(1+ 1) , and 1
to 0, 1, and oo respectively is

(b))
2
i & .
l"1:'- %
‘ ‘ :-‘ :‘ 1;

: %
-1 1 F S

Al

R

(b)(i1) Since fl maps i to 0 and 1 to oo then the straight and curved boundaries of R
are mapped to extended lines originating at the origin.

From part (a), 2(1 +1i) is mapped to a point on the positive real-axis then the straight
boundary is mapped to the non-negative x-axis.

At z =1 the angle between the boundary lines of R are at an angle of /4. Therefore as
the transformation is conformal then this is also the angle at the origin of the
transformed lines. Going along the straight line boundary in R from i towards 1 the
region to be mapped is on the left. Therefore the image of the region is above the non-
negative real axis.

Therefore the image of R under fl isR;={z e C: 0<Argz<m/4}
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(b)(iii) A conformal mapping from R; onto S is the power function w = g(z)= z-.
Since the combination of conformal mapping is also conformal then a conformal
mapping from R to S is

(b)(iv)

Since f ' = (g, f)) '=(f; 'og") then using Unit D1, Section 2, Para. 6 we have

1/2

_ z ' +1
f 1(2): 7z +1
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