(a)
$$(2-2i)^4 = (-8i)^2 = -64$$
.

(b)
$$8i = 8\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

The principal cube root is (Unit A1, Section 3, Para 4)

$$8^{1/3} \left(\cos \left(\frac{1}{3} \left(\frac{\pi}{2} \right) \right) + i \sin \left(\frac{1}{3} \left(\frac{\pi}{2} \right) \right) \right) = 2 \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) = \sqrt{3} + i.$$

(c)
$$\text{Log } (1 - i) = \log_e (|1 - i|) + i \text{Arg} (1 - i) = \log_e \sqrt{2} - \frac{\pi}{4}i$$
 (Unit A2, Section 5, Para. 1)

(d)
$$(-1)^{-i} = \exp(-i \operatorname{Log}(-1))$$
 (Unit A2, Section 5, Para. 3)
 $= \exp(-i {\log_e |-1| + i \operatorname{Arg}(-1)})$ (Unit A2, Section 5, Para. 1)
 $= \exp(-i {0 + i\pi}) = \exp(\pi)$

Question 2

(a)

(b)(i) A is not a region as it is not open.

B is a region.

C is not a region as it is not connected.

(b)(ii) A is compact.

B and C are not compact as they are neither closed or bounded.

(a)

(a)(i) The standard parametrization for the line segment Γ is (Unit A2, Section 2, Para. 3)

$$\gamma(t) = (1-t)i + 2t \qquad (t \in [0, 1])$$

(a)(ii)
$$z = (1 - t)i + 2t$$
, Re $z = 2t$, $dz = (2 - i) dt$.

Since γ is a smooth path then (Unit B1, Section 2, Para. 1)

$$\int_{\Gamma} \operatorname{Re} z \, dz = \int_{0}^{1} 2t(2-i)dt = (2-i) \left[t^{2}\right]_{0}^{1} = 2-i.$$

(b)

The length of Γ is $L = \sqrt{2^2 + 1^2} = \sqrt{5}$.

Using the Triangle Inequality (Unit A1, Section 5, Para. 3b) then, for $z \in \Gamma$, we have

$$\begin{aligned} \left|\cos z\right| &= \frac{1}{2} \left|e^{iz} + e^{-iz}\right| \le \frac{1}{2} \left\{ \left|e^{iz}\right| + \left|e^{-iz}\right| \right\} = \frac{1}{2} \left\{ e^{Re(iz)} + e^{Re(-iz)} \right\} \\ &= \frac{1}{2} \left\{ e^{-y} + e^{y} \right\} \le \frac{1}{2} \left\{ e^{0} + e^{1} \right\} = \frac{1}{2} \left(1 + e \right) < e \end{aligned}$$

Using the Backwards form of the Triangle Inequality (Unit A1, Section 5, Para. 3c) then, for $z \in \Gamma$, we have

$$|9+z^{2}| \ge |9|-|z^{2}| \ge |9-4| = 5$$

Therefore $M = \left| \frac{\cos z}{9 + z^2} \right| \le \frac{e}{5}$ for $z \in \Gamma$.

 $f(z) = \frac{\cos z}{9 + z^2}$ is continuous on $\mathbb{C} - \{-3i, 3i\}$ and hence on the line Γ .

Therefore by the Estimation Theorem (Unit B1, Section 4, Para. 3)

$$\left| \int_{\Gamma} f(z) dz \right| \leq ML = \frac{e}{5} * \sqrt{5} = \frac{e}{\sqrt{5}}.$$

(a)

Let \mathcal{R} be the simply-connected region $\{z: |z| < 2\}$. C is a closed contour in \mathcal{R} , and $f(z) = \frac{\exp z}{(3-z)^3}$ is analytic on \mathcal{R} .

By Cauchy's Theorem (Unit B2, Section 1, Para. 4)

$$\int_{C} \frac{\exp z}{(3-z)^3} dz = 0.$$

(b)

Let \mathcal{R} be the simply connected region \mathbb{C} . \mathcal{R} is a simply-connected region and \mathbb{C} is a simple-closed contour in \mathbb{R} . As $\exp(3-z)$ is analytic on \mathcal{R} then by Cauchy's Integral Formula (Unit B2, Section 2, Para. 1)

$$\int_{C} \frac{\exp(3-z)}{z} dz = 2\pi i * \exp(3-0) = 2\pi e^{3} i.$$

(c)

Let \mathcal{R} be the simply connected region \mathbb{C} . \mathcal{R} is a simply-connected region and \mathbb{C} is a simple-closed contour in \mathbb{R} . As $f(z) = \exp(3-z)$ is analytic on \mathcal{R} then by Cauchy's n'th Derivative Formula (Unit B2, Section 3, Para. 1) with n = 2 and $\alpha = 0$ we have

$$\int_{C} \frac{\exp(3-z)}{z^{3}} dz = \frac{2\pi i}{2!} * f^{(2)}(0).$$

$$f^{(1)}(z) = -\exp(3-z)$$
 and $f^{(2)}(z) = \exp(3-z)$ so $\int_C \frac{\exp(3-z)}{z^3} dz = \pi e^3 i$

(a)

 $z^3 = -1 = e^{i\pi}$. Therefore $z^3 + 1$ has zeros at $z = e^{\pi i/3}$, $e^{\pi i} = -1$, and $e^{5\pi i/3} = e^{-\pi i/3}$. Therefore f has simple poles at these points.

Let
$$g(z) = 1$$
 and $h(z) = z^3 + 1$. Then $h'(z) = 3z^2$.

If α is one of the poles then g and h are analytic at α , $h(\alpha) = 0$, and $h'(\alpha) = 3\alpha^2 \neq 0$. Therefore by the g/h rule (Unit C1, Section 1, Para. 2)

Res
$$(f, e^{\pi i/3}) = \frac{1}{3e^{2\pi i/3}} = \frac{1}{3}e^{-2\pi i/3}$$

$$\operatorname{Res}(f,-1) = \frac{1}{3}$$

$$\operatorname{Res}(f, e^{-\pi i/3}) = \frac{1}{3e^{-2\pi i/3}} = \frac{1}{3}e^{2\pi i/3}$$

(b)

I shall use the result given in Unit C1, Section 3, Para. 8.

Let
$$p(t) = 1$$
, $q(t) = t^3 + 1$.

p and q are polynomial functions such that the degree of q exceeds that of p by at least 2, and the pole of p/q on the real axis is simple. Therefore

$$\int_{-\infty}^{\infty} \frac{1}{t^3 + 1} dt = 2\pi i S + \pi i T$$

where S is the sum of the residues of f at the poles in the upper half-plane, and T is the sum of the residues of f at the poles on the real axis.

As
$$S = Res(f, e^{i\pi/3})$$
 and $T = Res(f, -1)$.

$$\int_{-\infty}^{\infty} \frac{1}{t^3 + 1} dt = 2\pi i \left(\frac{e^{-2\pi i/3}}{3} \right) + \pi i \left(\frac{1}{3} \right)$$

$$= \frac{2\pi i}{3} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) + \frac{\pi i}{3} = \frac{\sqrt{3}\pi}{3}$$

[[As it is a real integral we expect the imaginary terms to cancel]]

(a)(i) Let
$$g_1(z) = z^5$$
.

For
$$z \in C_1$$
 then, using the Triangle Inequality (Unit A1, Section 5, Para. 3), $|f(z) - g_1(z)| = |-3z^3 + i| \le |-3z^3| + |i| = 24 + 1 < 32 = |g_1(z)|$.

As f is a polynomial then it is analytic on the simply-connected region $\mathbf{R} = \mathbb{C}$. Since C_1 is a simple-closed contour in \mathbf{R} then by Rouché's theorem (Unit C2, Section 2, Para. 4) f has the same number of zeros as g_1 inside the contour C_1 . Therefore f has 5 zeros inside C_1 .

(a)(ii) Let
$$g_2(z) = -3z^3$$
.

On the contour C₂ we have, using the Triangle Inequality,

$$| f(z) - g_2(z) | = |z^5 + i| \le |z^5| + |i| = 1 + 1 < 3 = |g_2(z)|.$$

As C_2 is a simple-closed contour in R then by Rouché's theorem f has the same number of zeros as g_2 inside the contour C_2 . Therefore f has 3 zeros inside C_2 .

(b)

From part(a) f(z) has 2 solutions in the set $\{z: 1 \le z \le 2\}$. Therefore we have to find if there are any solutions on C_2 .

From part (a), on C_2 we have $|z^5 + i| \le 2$.

Therefore, using the Backwards form of the Triangle Inequality (Unit A1, Section 5, Para. 3c)

$$|f(z)| \geq |\ |\text{-}3z^3| \ \text{-} \ |z^5 + i|| \geq |\ 3 \ \text{-} \ 2| = 1, \ \text{on} \ C_2.$$

As f(z) is non-zero on C_2 then there are exactly 2 solutions in the set $\{z: 1 \le z \le 2\}$.

(a)

The conjugate velocity function $\overline{q}(z) = 1/z^2$.

As q is a steady continuous 2-dimensional velocity function on the region $\mathbb{C} - \{0\}$ and \overline{q} is analytic on $\mathbb{C} - \{0\}$ then q is a model fluid flow (Unit D2, Section 1, Para. 14).

(b) On $\mathbb{C} - \{0\}$, $\Omega(z) = -\frac{1}{z}$ is a primitive of \overline{q} . Therefore Ω is a complex potential function for the flow (Unit D2, Section 2, Para. 1).

The stream function
$$\Psi(x,y) = \operatorname{Im}\Omega(z)$$
 (Unit D2, Section 2, Para. 4)
$$= \operatorname{Im}\left(-\frac{1}{x+iy}\right) \quad , \text{ where } z = x+iy, (x,y) \neq (0,0)$$

$$= \operatorname{Im}\left(-\frac{x-iy}{x^2+y^2}\right) = \frac{y}{x^2+y^2}$$

A streamline through the point 2i satisfies the equation

$$\frac{y}{x^2 + y^2} = \Psi(0,2) = \frac{1}{2}$$
 (Unit D2, Section 2, Para. 4)

Therefore the streamline through i has the equation $x^2 + y^2 - 2y = 0$ or $x^2 + (y-1)^2 = 1$

Since q(2i) = -1/4 (-x direction) then the direction of flow is as shown.

(c)

The flux of q across the unit circle $C = \{z : |z| = 1\}$ is (Unit D2, Section 1, Para. 10)

$$\operatorname{Im}\left(\int_{C} \overline{q}(z)dz\right) = \operatorname{Im}\left(\int_{C} \frac{1}{z^{2}}dz\right) = 0$$
 by Cauchy's Residue Theorem or the nth Derivative formula (Unit B4, Section 3, Para. 1).

(a)

If α is a fixed point then $f(\alpha) = \alpha^2 - 2\alpha + 2 = \alpha$ (Unit D3, Sect. 1, Para 3). As $\alpha^2 - 3\alpha + 2 = (\alpha - 1)(\alpha - 2) = 0$ then there are fixed points at 1 and 2.

$$f'(z) = 2z - 2$$
.

As f'(1) = 0 then 1 is a super-attracting fixed point (Unit D3, Sect. 1, Para. 5). As f'(2) = 2 then 2 is a repelling fixed point.

(b)(i) [[From the diagram in Handbook looks as if point not in Mandelbrot set.]]

$$P_{c}(0) = -\frac{1}{2}(3+i)$$
.

$$P_c^2(0) = \frac{1}{4}(3+i)^2 - \frac{1}{2}(3+i) = (2+\frac{3}{2}i) - \frac{1}{2}(3+i) = \frac{1}{2}+i$$
.

$$P_c^3(0) = (\frac{1}{2} + i)^2 - \frac{1}{2}(3 + i) = (-\frac{3}{4} + i) - \frac{1}{2}(3 + i) = -\frac{9}{4} + \frac{1}{2}i$$
.

As $|P_c^3(0)| > 2$ then c does not lie in the Mandelbrot set (Unit D3, Section 4, Para. 5).

(b)(ii)

Since $|c+1| = \left| \frac{1}{6}i \right| < \frac{1}{4}$ then P_c has an attracting 2-cycle (Unit D3, Section 4, Para. 9). Therefore c belongs to the Mandelbrot set (Unit D3, Section 4, Para. 8).

(a)

(a)(i)

$$f(z) = z \operatorname{Re} z + |z|^2 = (x + iy)x + (x^2 + y^2) = u(x, y) + iv(x, y),$$

where $u(x, y) = 2x^2 + y^2$, and $v(x, y) = xy$.

(a)(ii)

$$\frac{\partial u}{\partial x}(x,y) = 4x , \quad \frac{\partial u}{\partial y}(x,y) = 2y , \quad \frac{\partial v}{\partial x}(x,y) = y , \quad \frac{\partial v}{\partial y}(x,y) = x$$

If f is differentiable then the Cauchy-Riemann equations hold (Unit A4, Section 2, Para. 1). If they hold at (a, b)

$$\frac{\partial u}{\partial x}\big(a,b\big)=4a=a=\frac{\partial v}{\partial y}\big(a,b\big), \text{ and }$$

$$\frac{\partial v}{\partial x}\big(a,b\big) = b = -2b = -\frac{\partial u}{\partial y}\big(a,b\big)$$

Therefore the Cauchy-Riemann equations only hold at (0, 0).

As f is defined on the region \mathbb{C} , and the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$

- 1. exist on C
- 2. are continuous at (0, 0).
- 3. satisfy the Cauchy-Riemann equations at (0, 0)

then, by the Cauchy-Riemann Converse Theorem (Unit A4, Section 2, Para. 3), f is differentiable at 0.

As the Cauchy-Riemann only hold at (0, 0) then f is not differentiable on any region surrounding 0. Therefore f is not analytic at 0. (Unit A4, Section 1, Para. 3)

(a)(iii)

$$f'(0,0) = \frac{\partial u}{\partial x}(0,0) + i \frac{\partial v}{\partial x}(0,0) = 0$$
 (Unit A4, Section 2, Para. 3).

(b)

- (i) Since g is a polynomial then g is entire (Unit A4, Section 1, Para. 7) and g'(z) = 2z on \mathbb{C} . As $g(z) \neq 0$ when $z \neq 0$ then g is conformal on $\mathbb{C} \{0\}$ (Unit A4, Section 4, Para. 6).
- (ii) As g is analytic on \mathbb{C} and $g'(2i) \neq 0$ then a small disc centred at 2i is mapped approximately (Unit A4, Section 1, Para. 11) to a small disc centred at g(2i) = -4 + 3 = -1. The disc is rotated by Arg $(g'(2i)) = \text{Arg } 4i = \pi/2$, and scaled by a factor |g'(2i)| = 4.

(iv)

(v) $(g \circ \gamma_i)'(t) = \gamma_i'(t)g'(\gamma_i(t))$ for i = 1, 2.

As g'(z) = 2z then when $\gamma_i(t) = 0$, $(g \circ \gamma_i)'(0) = 0$ (i = 1, 2).

As the paths at z = 0 are not at right-angles then g is not conformal at 0.

(a)

(a)(i) f has simple poles at z = 0 and z = 3.

(a)(ii)
$$f(z) = \frac{9}{z(z-3)} = -\frac{3}{z(1-\frac{z}{3})}$$
$$= -\frac{3}{z} \left\{ \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^{n} \right\}$$

since
$$|z/3| < 1$$
 on $\{z : 0 < |z| < 3\}$ (Unit B3, Section 3, Para. 5)

Hence the required Laurent series about 0 is

$$-\sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^{n-1} = -\frac{3}{z} - 1 - \frac{z}{3} - \frac{z^2}{9} - \dots - \left(\frac{z}{3}\right)^{n-1} - \dots$$

(a)(iii)
$$f(z) = \frac{9}{z(z-3)} = \frac{9}{(z-3)} \frac{1}{(z-3)+3} = \frac{9}{(z-3)^2} \frac{1}{1+\frac{3}{z-3}}$$
$$= \frac{9}{(z-3)^2} \left\{ \sum_{n=0}^{\infty} \left(\frac{-3}{z-3} \right)^n \right\}$$

since
$$|3/(z-3)| < 1$$
 on $\{z : |z-3| > 3\}$ (Unit B3, Section 3, Para. 5)

Therefore the required Laurent series about 3 is

$$\sum_{n=0}^{\infty} \left(\frac{-3}{z-3}\right)^{n+2} = \frac{9}{\left(z-3\right)^2} - \frac{27}{\left(z-3\right)^3} + \frac{81}{\left(z-3\right)^4} - \dots + \left(\frac{-3}{z-3}\right)^{n+2} - \dots.$$

(b)

(b)(i) By the Composition Rule (Unit B3, Section 4, Para. 3) the Taylor series for g about 0 on \mathbb{C} is

$$\begin{split} &\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left\{ 2 \sum_{m=0}^{\infty} (-1)^m \frac{z^{2m+1}}{(2m+1)!} \right\}^{2n} \\ &= 1 - \frac{2^2}{2!} \left\{ z - \frac{z^3}{3!} + \ldots \right\}^2 + \frac{2^4}{4!} \left\{ z - \frac{z^3}{3!} + \ldots \right\}^4 - \ldots \\ &= 1 - 2 \left\{ z^2 - \frac{z^4}{3} + \ldots \right\} + \left\{ \frac{2}{3} z^4 - \ldots \right\} = 1 - 2 z^2 + \frac{4}{3} z^4 - \ldots \quad \text{up to the term in } z^4. \end{split}$$

Since g is analytic on C then by Taylor's Theorem (Unit B3, Section 3, Para. 1) then the representation of g is unique on all open discs centred at 0 in the sense that if

$$g(z) = \sum_{n=0}^{\infty} a_n z^n$$

then the coefficients a_n are those found above.

Let f(z) = g(1/z). f is analytic on the punctured disc \mathbb{C} - $\{0\}$ which contains the circle C centred at 0.

The Laurent series about 0 for f on this disc is

$$1-2\frac{1}{z^2} + \frac{4}{3}\frac{1}{z^4} - \dots = \sum_{n=-\infty}^{\infty} a_n z^n$$

using Laurent's Theorem (Unit B4, Section 2, Para. 5) then

$$\int_{C} zg(1/z)dz = \int_{c} \frac{f(w)}{w^{-1}} dw = 2\pi i a_{-2} = -4\pi i$$

and
$$\int_C z^2 g(1/z) dz = \int_c \frac{f(w)}{w^{-2}} dw = 2\pi i a_{-3} = 0$$
.

(a)(i)

Putting
$$z = x + iy$$
 where $x, y \in \mathbf{R}$ then
 $\exp(iz) = \exp(ix - y) = e^{-y}(\cos x + i \sin x)$

Since
$$| \exp z | = e^{Re z}$$
 (Unit A2, Section 4, Para. 2b) then $| \exp(iz) | = \exp(e^{-y}\cos x)$

(a)(ii)

Let
$$f(z) = \exp(e^{iz})$$
 and $R = \{z : -\pi \le Re \ z \le \pi, -1 \le Im \ z \le 1\}.$

As f is analytic on the bounded region R and continuous on \overline{R} then by the Maximum Principle (Unit C2, Section 4, Para. 4) there exists an $\alpha \in \partial R$ such that $|f(z)| \le |f(\alpha)|$ for $z \in \overline{R}$.

From part (i) we have $|\exp(iz)| = \exp(e^{-y}\cos x)$.

As $e^{-y}\cos x$ is real and \exp is a monotonic function for real values we need to find the maximum of $e^{-y}\cos x$ on ∂R . e^{-y} is a maximum when y = -1 and $\cos x$ is a maximum when x = 0. These values can be attained simultaneously on ∂R .

Therefore max $\{ \exp(e^{iz}) : -\pi \le Re \ z \le \pi, -1 \le Im \ z \le 1 \} = e^e$.

The maximum only occurs when z = -i as at all other points in \overline{R} either $e^y < e^1$ or $\cos x < 1$.

(b)

Let $D_f \!=\! \{z\!: |z| \!<\! 4\}$ and $D_g \!=\! \{z\!: |z| \!>\! 4\}.$

Since $D_f \cup D_g = \emptyset$ then f and g are not direct analytic continuations of each other.

Let
$$h(z) = \frac{4}{4-z}$$
 on D_h , where $D_h = \mathbf{C} - \{4\}$.

When $z\in D_f$ then |z|/4<1 and the geometric series $\sum_{n=0}^\infty \biggl(\frac{z}{4}\biggr)^n$ is convergent and has the sum

$$\frac{1}{1-\frac{z}{4}} = \frac{4}{4-z}.$$
 (Unit B3, Section 3, Para. 5)

Since f = h when $z \in D_f \subseteq D_f \cup D_h$ then h is an analytic continuation of f.

When $z\in D_g$ then $|4/|z|\leq 1$ and the geometric series $\sum_{n=0}^{\infty}\!\left(\frac{4}{z}\right)^n$ is convergent and has the sum

$$\frac{1}{1-\frac{4}{z}} = \frac{z}{z-4}$$
.

Therefore
$$-\sum_{n=1}^{\infty} \left(\frac{4}{z}\right)^n = -\frac{4}{z} \sum_{n=0}^{\infty} \left(\frac{4}{z}\right)^n = \frac{4}{z-4}$$
 when $z \in D_g$.

Since g = h when z \in D_g \subseteq D_g \cup D_h then g is an analytic continuation of h.

Since (f, D_f) , (g, D_g) , (h, D_h) form a chain then f and g are indirect analytic continuations of each other.

(a)

Using the formula for a transformation mapping points to the standard triple (Unit D1, Section 2, Para. 11) then the Möbius transformation \hat{f}_1 which maps i, $\frac{1}{2}(i+1)$, and 1 to 0, 1, and ∞ respectively is

$$f_1(z) = \frac{(z-i)}{(z-1)} \frac{\left(\frac{1}{2}(1+i)-1\right)}{\left(\frac{1}{2}(1+i)-i\right)} = \frac{(z-i)}{(z-1)} \frac{\frac{1}{2}(-1+i)}{\frac{1}{2}(1-i)} = \frac{-z+i}{z-1}$$

(b)(i)

(b)(ii) Since $\hat{\mathbf{f}}_1$ maps i to 0 and 1 to ∞ then the straight and curved boundaries of R are mapped to extended lines originating at the origin.

From part (a), $\frac{1}{2}(1+i)$ is mapped to a point on the positive real-axis then the straight boundary is mapped to the non-negative x-axis.

At z = i the angle between the boundary lines of R are at an angle of $\pi/4$. Therefore as the transformation is conformal then this is also the angle at the origin of the transformed lines. Going along the straight line boundary in R from i towards 1 the region to be mapped is on the left. Therefore the image of the region is above the nonnegative real axis.

Therefore the image of R under \hat{f}_1 is $R_1 = \{z \in \mathbb{C}: 0 \le \text{Arg } z \le \pi/4\}$

(b)(iii) A conformal mapping from R_1 onto S is the power function $w = g(z) = z^2$. Since the combination of conformal mapping is also conformal then a conformal mapping from R to S is

$$f(z) = \left(\frac{-z+i}{z-1}\right)^2$$

(b)(iv)

Since $f^{-1} = (g_0 f_1)^{-1} = (f_1^{-1} g_0^{-1})$ then using Unit D1, Section 2, Para. 6 we have

$$f^{-1}(z) = \frac{z^{1/2} + i}{z^{1/2} + 1}$$