(a) 2 marks

(a)(i)
$$|\alpha| = \sqrt{(-2)^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}$$
 (Unit A1, Section 2, Para. 2)

(a)(ii) Arg
$$\alpha = -3\pi/4$$
. (Unit A1, Section 2, Para. 8)

(b) 6 marks

(b)(i)
$$\alpha = 2\sqrt{2} \exp(-3i\pi/4)$$

$$\frac{1}{\alpha} = \frac{1}{2\sqrt{2}} \left(\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right) = -\frac{1}{4} + i\frac{1}{4} \quad \text{(Unit A1, Section 2, Para. 12)}$$

(b)(ii) The principal value of $\alpha^{1/3}$ is (Unit A1, Section 3, Para 3)

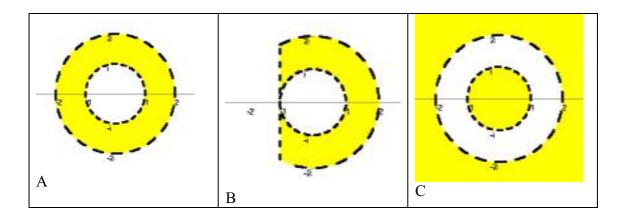
$$\left(2\sqrt{2}\right)^{1/3} \left(\cos\left(\frac{1}{3}\left(-\frac{3\pi}{4}\right)\right) + i\sin\left(\frac{1}{3}\left(-\frac{3\pi}{4}\right)\right)\right)$$
$$= \sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) = 1 - i$$

(b)(iii) Log
$$\alpha = \log_e (2\sqrt{2}) + i(-3\pi/4) = \frac{3}{2}\log_e 2 - \frac{3\pi}{4}i$$

(Unit A2, Section 5, Para. 1)

(b)(iv)
$$\text{Log}(\alpha^3) = \text{Log}\left(16\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)\right)$$
 as $-\frac{9}{4}\pi = -\frac{1}{4}\pi - 2\pi$
= $\log_e\left(16\sqrt{2}\right) - \frac{\pi}{4}i = \frac{9}{2}\log_e 2 - \frac{\pi}{4}i$ (Unit A2, Section 5, Para. 1)

(a) 3 marks



- (b) 3 marks
- (b)(i) A, B, and C are open (Unit A3, Section 4, Para. 1).
- (b)(ii) A and B are regions (Unit A3, Section 4, Paras. 6 and 7).
- (b)(iii) B is a simply-connected region (Unit B2, Section 1, Para. 3).
- (c) 2marks

$$D = \{0, 1\}$$

[Since \mathbb{C} – D is a region (Unit A3, Section 4, Paras. 7 and 8) then it is open. Therefore D is closed (Unit A3, Section 5, Para. 1)]

(a) 3 marks

A parametrization for the circle C is (Unit A2, Section 2, Para. 3)

$$\gamma(t) = 2e^{it} \qquad (t \in [0, 2\pi])$$

$$\gamma'(t) = 2ie^{it}$$

As γ is differentiable on $[0, 2\pi]$, γ' is continuous on $[0, 2\pi]$, and γ' is non-zero on $[0, 2\pi]$ then γ is a smooth path (Unit A4, Section 4, Para. 3).

Since γ is a smooth path then (Unit B1, Section 2, Para. 1)

$$\int_{C} \overline{z} \, dz = \int_{0}^{2\pi} \overline{\gamma(t)} \gamma'(t) dt = \int_{0}^{2\pi} 2e^{-it} \left(2ie^{it} \right) dt = 4i \int_{0}^{2\pi} dt = 8\pi i$$

(b) 5 marks

The length of the circle C, $L = 2\pi * 2 = 4\pi$.

Using the Triangle Inequality (Unit A1, Section 5, Para. 3b) then for z on the contour C

$$\begin{aligned} \left| \sin z \right| &= \left| \frac{e^{iz} - e^{-iz}}{2i} \right| \le \frac{1}{2} \left\{ \left| e^{iz} \right| + \left| e^{-iz} \right| \right\} \end{aligned} \qquad \text{(Unit A2, Section 4, Para. 4)}$$

$$= \frac{1}{2} \left\{ \left| \exp(\text{Re} \left(iz \right) \right) \right| + \left| \exp(\text{Re} \left(-iz \right) \right) \right| \right\} \qquad \text{(Unit A2, Section 4, Para. 2)}$$

$$= \frac{1}{2} \left\{ \left| e^{-y} \right| + \left| e^{y} \right| \right\} \qquad \text{where } z = x + iy$$

$$\le \frac{1}{2} \left\{ e^{2} + e^{2} \right\} = e^{2} .$$

Using the Backwards form of the Triangle Inequality (Unit A1, Unit 5, Para. 3c) then for $z \in C$

$$|1 + z^6| \ge |1 - |z|^6| = |1 - 64| = 63$$

Putting $f(z) = \frac{\sin z}{1 + z^6}$ then on the circle C we have $|f(z)| \le \frac{e^2}{63} = M$.

By the Quotient Rule (Unit A3, Section 2, Para. 5) f(z) is continuous on $\mathbb{C} - \{z : |z| = 1\}$ and hence on the circle C. Therefore by the Estimation Theorem (Unit B1, Section 4, Para. 3)

$$\left| \int_{\Gamma} \frac{\sin z}{1 + z^{6}} dz \right| \le ML = \frac{e^{2}}{63} * 4\pi = \frac{4\pi e^{2}}{63}$$

(a) 3 marks

f is analytic on \mathbb{C} - $\{-i\}$.

 $\mathbf{R} = \{z : |z| < 1\}$ is a simply-connected region, f is an analytic on \mathbf{R} , and C is a simple-closed contour in \mathbf{R} .

Therefore by Cauchy's Theorem (Unit B2, Section 1, Para. 4) we have $\int_C f(z) dz = 0$

(b) 5 marks

Let $g(z) = z \exp(z^2)$. g is a function which is analytic on the simply-connected region \mathbb{C} (Unit B2, Section 1, Para. 3).

The contour C is a simple-closed contour in \mathbb{C} . Since the zero of z+i is inside the circle C then using Cauchy's n^{th} Derivative Formula (Unit B2, Section 3, Para. 1), with n=2 and $\alpha=-i$ we have

$$\int_{C} \frac{z \exp(z^{2})}{(z+i)^{3}} dz = \int_{C} \frac{g(z)}{(z+i)^{3}} dz = \frac{2\pi i}{2!} g^{(2)}(i)$$

$$g'(z) = \exp(z^2) + 2z^2 \exp(z^2) = (1 + 2z^2) \exp(z^2)$$

$$g''(z) = 4z \exp(z^2) + 2z(1 + 2z^2) \exp(z^2) = (6z + 4z^3) \exp(z^2)$$

So
$$g''(-i) = (-6i + 4i)exp(-1) = -2ie^{-1}$$

Hence
$$\int_{C} \frac{z \exp(z^{2})}{(z+i)^{3}} dz = \frac{2\pi i}{2!} * (-2ie^{-1}) = \frac{2\pi}{e}$$

(a) 4 marks

f is an analytic function which has simple poles at $\pm 3i$.

$$Res(f,3i) = \frac{\lim_{z \to 3i} (z - 3i)f(z) = \frac{e^{2i(3i)}}{(3i + 3i)} = -i\frac{e^{-6}}{6}$$
 Unit C1, Section 1, Para. 1

$$Res(f,-3i) = \frac{\lim_{z \to -3i} (z + 3i)f(z) = \frac{e^{2i(-3i)}}{(-3i - 3i)} = i\frac{e^{6}}{6}$$

[or use the cover-up rule (Unit C1, Section 1, Para. 3)]

(b) 4 marks [Unit C1, Problem 3.12.]

I shall use the result given in Unit C1, Section 3, Para. 9.

Let
$$p(t) = 1$$
, $q(t) = t^2 + 9$, $f(t) = \frac{p(t)}{q(t)} \exp(ikt)$ where $k = 2$.

Since p and q are polynomials, the degree of q exceeds that of p by at least 1, there are no poles on the real axis and $k \ge 0$ then

$$\int_{-\infty}^{\infty} \frac{1}{t^2 + 9} e^{i2t} dt = 2\pi i S + \pi i T$$

where S is the sum of the residues of f at the poles in the upper half-plane, and T is the sum of the residues of f at the poles on the real axis.

As S = Res(f, 3i) and T = 0 then

$$\int_{-\infty}^{\infty} \frac{1}{t^2 + 9} e^{i2t} dt = 2\pi i \left(-\frac{e^{-6}}{6} i \right) = \frac{\pi}{3} e^{-6}$$

So taking the real part of the last equation we have

$$\int_{-\infty}^{\infty} \frac{\cos 2t}{t^2 + 9} dt = \text{Re} \left\{ \int_{-\infty}^{\infty} \frac{e^{i2t}}{t^2 + 9} dt \right\} = \frac{\pi}{3} e^{-6}.$$

(a) 7 marks

(a)(i)

Let $g_1(z) = 7$.

For z on the contour C₁ then, using the Triangle Inequality (Unit A1 Section 5, Para 3),

$$| f(z) - g_1(z) | = |z^5 + 5iz^3 | \le |z^5| + |5iz^3| = 1 + 5$$

 $< 7 = | g_1(z) |.$

Since f is a polynomial then it is analytic on the simply-connected region $\mathbf{R} = \mathbb{C}$.

Also as C_1 is a simple-closed contour in R then by Rouche's theorem (Unit C_2 , Section 2, Para. 4) f has the same number of zeros as g_1 inside the contour C_1 . Therefore f has no zeros inside C_1 .

(a)(ii)

Let $g_2(z) = 5iz^3$.

For z on the contour C₂ then, using the Triangle Inequality,

$$| f(z) - g_2(z) | = |z^5 + 7| \le |z^5| + 7 = 32 + 7 < 40 = | g_2(z) |.$$

As C_2 is a simple-closed contour in R then by Rouche's theorem f has the same number of zeros as g_2 inside the contour C_2 . Therefore f has 3 zeros inside C_2 .

(b) 1 mark

When
$$|z| = 3$$
 then, using the Triangle Inequality,
 $243 = |z^5| > 135 + 5 = |5iz^3| + 7 \ge |5iz^3 + 7|$.

Therefore repeating a similar argument to those in part (a) with $g_3(z) = 5iz^3 + 7$ we can show all the zeros lie inside the circle $\{z: |z| = 3\}$.

Therefore M = 3 is a suitable answer.

(a) 1 mark

q is a steady continuous 2-dimensional velocity function on the region $\mathbb{C} - \{0\}$ and the conjugate velocity $\overline{q}(z) = 3/z$ is analytic on $\mathbb{C} - \{0\}$. Therefore (Unit D2 Section 1, Para. 14) q is a model fluid flow on $\mathbb{C} - \{0\}$.

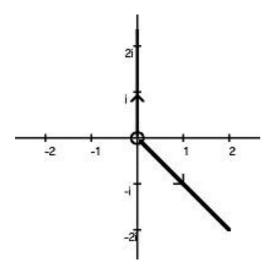
(b) 5 marks

The complex potential function Ω is a primitive of $\overline{q}(z)$ (Unit D2, Section 2, Para. 1). Therefore the complex potential function $\Omega(z) = 3 \text{ Log } z$ and the stream function

$$\Psi(x, y) = \text{Im}\Omega(z)$$
 (Unit D2, Section 4, Para. 4)
= 3 Arg z (Unit A2, Section 5, Para. 1)

A streamline through i is given by $3 \text{ Arg } z = \Psi(0,1) = 3\pi/2$. So Arg $z = \pi/2$. The velocity function at i is q(i) = 3i (upwards)

A streamline through 1 - i is given by $3 \text{ Arg } z = \Psi(1,-1) = -3\pi/4$. So Arg $z = -\pi/4$. The velocity function at 1 - i is q(1-i) = 3/(1+i) = 3(1-i)/2 (South-east)



(c) 2 marks

Flux of q across the unit circle $\Gamma = \{z : |z| = 1\}$ is (Unit D2, Section 2, Para. 1)

$$\operatorname{Im}\left(\int_{\Gamma} \overline{q}(z)dz\right) = \operatorname{Im}\left(\int_{\Gamma} \frac{3}{z}dz\right) = \operatorname{Im}\left(3*2\pi i\right) = 6\pi$$

by Cauchy's Integral Formula (Unit B2, Section 2, Para 1).

(a) 4 marks

If α is a fixed point of f then $f(\alpha) = \alpha$ (Unit D3, Section 1, Para. 3).

$$f(\alpha) = \alpha \Leftrightarrow 2\alpha - 2i\alpha^2 = \alpha \Leftrightarrow \alpha (1 - 2i\alpha) = 0.$$

Therefore the fixed points are at z = 0 and $z = \frac{1}{2i} = -\frac{1}{2}i$.

$$f'(z) = 2 - 4iz$$
.

When z = 0 then |f'(z)| = 2. Therefore 0 is a repelling fixed point (Unit D3, Section 1, Para. 5).

When $z = -\frac{1}{2}i$, then $|f'(z)| = |2 + 2i^2| = 0$. Therefore $-\frac{1}{2}i$ is a super-attracting fixed point.

- (b) 4 marks
- (b)(i) $-1 + \frac{1}{5}i \in M$ (Unit D3 Section 4 Paras. 9(b) and 8).
- (b)(ii) Let $c = \frac{1}{2} i$.

$$P_{c}(0) = \frac{1}{2} - i$$
.

$$P_c^2(0) = (\frac{1}{2} - i)^2 + (\frac{1}{2} - i) = (\frac{1}{4} - 1 - i) + (\frac{1}{2} - i) = -\frac{1}{4} - 2i.$$

As $\left|P_c^2(0)\right| > 2$ then c does not lie in the Mandelbrot set (Unit D3, Section 4, Para. 5).

(a) 7 marks

$$f(z) = u(x, y) + i v(x, y)$$
 where $u(x,y) = x^2 + by^2$, and $v(x,y) = 2axy$.

$$\frac{\partial u}{\partial x}\big(x,y\big) = 2x\;, \qquad \quad \frac{\partial u}{\partial y}\big(x,y\big) = 2by \qquad \quad \frac{\partial v}{\partial x}\big(x,y\big) = 2ay\;, \qquad \quad \frac{\partial v}{\partial y}\big(x,y\big) = 2ax$$

As f is defined on the region \mathbb{C} , and the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$

- 1. exist on C
- 2. are continuous at each point of \mathbb{C} .

then, by the Cauchy-Riemann Converse Theorem (Unit A4, Section 2, Para. 3), f is differentiable at (α, β) if the Cauchy-Riemann equations (Unit A4, Section 2, Para. 1) are satisfied at that point.

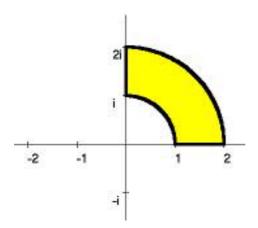
$$\frac{\partial u}{\partial x}\big(\alpha,\beta\big) = \frac{\partial v}{\partial y}\big(\alpha,\beta\big) \text{ when } 2\alpha = 2a\alpha. \text{ This is satisfied if } \alpha = 0 \text{ or } a = 1.$$

$$\frac{\partial v}{\partial x} (\alpha, \beta) = -\frac{\partial u}{\partial y} (\alpha, \beta) \text{ when } 2a\beta = -2b\beta. \text{ This is satisfied if } \beta = 0 \text{ or } a = -b.$$

If f is analytic on \mathbb{C} then the Cauchy-Riemann equations must hold everywhere in \mathbb{C} . Therefore we must have a = 1 and b = -a = -1,

$$<<$$
 Note. When $a = 1$ and $b = -1$ then $f(z) = x^2 + 2ixy - y^2 = (x + iy)^2 = z^2 >>$

- (b) 11 marks
- (i)



(ii)
$$\gamma_3(t) = 2 \exp(it)$$
 $(t \in [0, \pi/2])$

$$\gamma_4(t) = it \qquad (t \in [1, 2])$$

(iii) (Unit A4, Section 4, Para. 3)

 γ_1 . Using the Restriction Rule (Unit A3, Section 2, Para. 7) the parametrization is differentiable on $[0, \pi/2]$ and $\gamma_1^{'}(t) = i \exp(it)$. Since $\gamma_1^{'}$ is continuous and non-zero on $[0, \pi/2]$ the parametrization and the path are smooth.

 γ_2 . The parametrization is differentiable on [1, 2] and γ_2 (t) = 1. Since γ_2 is continuous and non-zero on [1, 2] the parametrization and the path are smooth.

 γ_3 . The parametrization is differentiable on $[0, \pi/2]$ and γ_3 (t) = 2i exp(it). Since γ_3 is continuous and non-zero on $[0, \pi/2]$ the parametrization and the path are smooth.

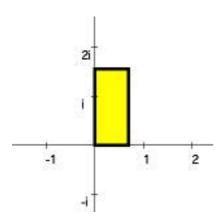
 γ_4 . The parametrization is differentiable on [1, 2] and γ_4 (t) = i. Since γ_4 is continuous and non-zero on [1, 2] the parametrization and path are smooth.

(ii) Log z is one of the standard functions (Unit A4, Section 3, Para. 4) and Log'(z) = 1/z on the domain $\mathbb{C} - \{x \in \mathbb{R} : x \le 0\}$

Since Log z is analytic when $z \in \mathbb{C} - \{x \in \mathbb{R}: x \le 0\}$ and $Log^{/}(z) \ne 0$ then Log is conformal on $\mathbb{C} - \{x \in \mathbb{R}: x \le 0\}$ (Unit A4, Section 4, Para. 6).

(iii) (unit A2, Section 5, Paras. 1 and 2)

$$\begin{split} (Log_{o}\gamma_{1})(t) &= it, & t \in [0,\,\pi/2]. \\ (Log_{o}\gamma_{2})(t) &= Log\,\, t = log_{e}\,\, t, & t \in [1,\,2]. \\ (Log_{o}\gamma_{3})(t) &= Log\,\, 2 + it = log_{e}\,\, 2 + it, & t \in [0,\,\pi/2]. \\ (Log_{o}\gamma_{4})(t) &= log_{e}\,\, |it| + i\,\, Arg\,\, (it) = log_{e}\,\, t + i\pi/2, & t \in [1,\,2]. \end{split}$$



[$1+i \in S$ and Log(1+i) = $\frac{1}{2} \log_e 2 + i\pi/4$ so S maps to the inside of the rectangle. OR As we move from 1 to 2 on the original boundary S is on the left. Therefore as we move from $\log_e 1 = 0$ to $\log_e 2$ on the image of this boundary the image of S is also on the left]

- (a) 10 marks
- (a)(i) f has simple poles at z = 0 and z = 2.

(a)(ii)
$$f(z) = \frac{4}{z(z-2)} = -\frac{2}{z(1-\frac{z}{2})}$$
$$= -\frac{2}{z} \left\{ \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^{n} \right\}$$

since |z/2| < 1 on $\{z : 0 < |z| < 2\}$ (Unit B3, Section 3, Para. 5)

Hence the required Laurent series about 0 is

$$-\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^{n-1} = -\frac{2}{z} - 1 - \frac{z}{2} - \frac{z^{2}}{4} - \dots - \left(\frac{z}{2}\right)^{n-1} - \dots$$

(a)(iii)
$$f(z) = \frac{4}{z(z-2)} = \frac{4}{(z-2)} \frac{1}{(z-2)+2} = \frac{4}{(z-2)^2} \frac{1}{1+\frac{2}{z-2}}$$
$$= \frac{4}{(z-2)^2} \left\{ \sum_{n=0}^{\infty} \left(\frac{-2}{z-2} \right)^n \right\}$$

since |2/(z-2)| < 1 on $\{z : |z-2| > 2\}$ (Unit B3, Section 3, Para. 5)

Therefore the required Laurent series about 2 is

$$\sum_{n=0}^{\infty} \left(\frac{-2}{z-2}\right)^{n+2} = \frac{4}{\left(z-2\right)^2} - \frac{8}{\left(z-2\right)^3} + \frac{16}{\left(z-2\right)^4} - \dots + \left(\frac{-2}{z-2}\right)^{n+2} - \dots.$$

(b) Identical to 2004 Qu 10(b).

(a) 9 marks

(a)(i)

Putting
$$z = x + iy$$
 where $x, y \in \mathbb{R}$ then
 $\exp(iz) = \exp(ix - y) = e^{-y}(\cos x + i \sin x)$

Since
$$| \exp z | = e^{Re z}$$
 (Unit A2, Section 4, Para. 2b) then $| \exp(iz) | = \exp(e^{-y}\cos x)$

(a)(ii)

Let
$$f(z) = \exp(e^{iz})$$
 and $R = \{z : -\pi < Re \ z < \pi, -1 < Im \ z < 1\}.$

As f is analytic on the bounded region R and continuous on \overline{R} then by the Maximum Principle (Unit C2, Section 4, Para. 4) there exists an $\alpha \in \partial R$ such that $|f(z)| \le |f(\alpha)|$ for $z \in \overline{R}$.

From part (i) we have $|\exp(iz)| = \exp(e^{-y}\cos x)$.

As $e^{-y}\cos x$ is real we need to find the maximum of $e^{-y}\cos x$ on ∂R . e^{-y} is a maximum when y = -1 and $\cos x$ is a maximum when x = 0. These values can be attained simultaneously on ∂R .

Therefore max $\{ exp(e^{iz}) : -\pi \le Re \ z \le \pi, -1 \le Im \ z \le 1 \} = e^e.$

The maximum only occurs when z = -i as at all other points in \overline{R} either $e^y < e^1$ or $\cos x < 1$.

(b) 9 marks

Let $D_f \!=\! \{z\!: |z| \!<\! 3\}$ and $D_g \!=\! \{z\!: |z| \!>\! 3\}.$

Since $D_f \cup D_g = \emptyset$ then f and g are not direct analytic continuations of each other.

When $z \in D_f$ then |z|/3 < 1 and the geometric series $\sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n$ is convergent and has the sum $\frac{1}{1-\frac{z}{3}} = \frac{3}{3-z}$. (Unit B3, Section 3, Para. 5)

When $z \in D_g$ then 3/|z| < 1 and the geometric series $\sum_{n=0}^{\infty} \left(\frac{3}{z}\right)^n$ is convergent and has the sum $\frac{1}{1-\frac{3}{z}} = \frac{z}{z-3} \,.$

$$Therefore \ -\sum_{n=1}^{\infty} \left(\frac{3}{z}\right)^n \ = -\frac{3}{z} \sum_{n=0}^{\infty} \left(\frac{3}{z}\right)^n \ = \frac{3}{3-z} \ \ when \ z \in D_g.$$

Let
$$h(z) = \frac{3}{3-z}$$
 on D_h , where $D_h = \mathbb{C} - \{3\}$.

Since f = h when $z \in D_f \subseteq D_f \cup D_h$ then h is an analytic continuation of f.

Since g = h when $z \in D_g \subseteq D_g \cup D_h$ then g is an analytic continuation of h.

Since (f, D_f) , (g, D_g) , (h, D_h) form a chain then f and g are indirect analytic continuations of each other.

2000 Question 12

Identical to 2004 Qu 12.