(a) 5 marks

(a)(i) 
$$w = \frac{1}{1+i} = \frac{1}{1+i} \left( \frac{1-i}{1-i} \right) = \frac{1-i}{2}$$

Therefore Arg w =  $-\pi/4$ . (Unit A1, Section 2, Para. 8)

(a)(ii) 
$$|w| = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

The principal fourth root of w is (Unit A1, Section 3, Para. 3)

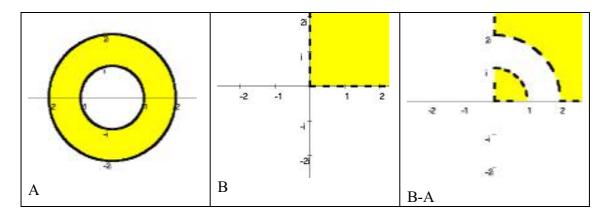
$$z_0 = 2^{-1/8} \left( \cos \left( \frac{1}{4} \left( -\frac{\pi}{4} \right) \right) + i \sin \left( \frac{1}{4} \left( -\frac{\pi}{4} \right) \right) \right)$$

$$= 2^{-1/8} \left( \cos \left( -\frac{\pi}{16} \right) + i \sin \left( -\frac{\pi}{16} \right) \right) \qquad \text{(Unit A1, Section 2, Para. 6)}$$

(b) 3 marks

$$(-1)^{3i} = \exp(3i \operatorname{Log}(-1))$$
 (Unit A2, Section 5, Para. 3)  
$$= \exp(3i(\log_{e}|-1|+i\operatorname{Arg}(-1)))$$
 (Unit A2, Section 5, Para. 1)  
$$= \exp(3i(0+i\pi)) = \exp(-3\pi).$$

# (a) 3 marks



- (b) 5 marks
- (b)(i) (Unit A3, Section 4, Paras. 6 and 7)

A is not a region since it is not open.

B is a region.

B-A is not a region as it is not connected.

# (b)(ii) (Unit A3, Section 5, Para. 5)

A is compact.

B is not compact as it is not closed or bounded.

B - A is not compact as it is not closed or bounded.

(a) 4 marks

The standard parametrization (Unit A2, Section 2, Para. 3) for  $\Gamma_1$  is

$$\begin{aligned} \gamma_1(t) &= (1-t) + ti, \qquad t \in [0,\,1]\\ \text{and} \qquad {\gamma_1}'(t) &= -1 + i. \end{aligned}$$

As  $\gamma_1$  is differentiable on [0, 1],  ${\gamma_1}'$  is continuous on [0, 1], and  ${\gamma_1}'$  is non-zero on [0, 1] then  ${\gamma_1}$  is a smooth path (Unit A4, Section 4, Para. 3).

Since  $\gamma_1$  is a smooth path then (Unit B1, Section 2, Para. 1)

$$\int_{\Gamma_{1}} \operatorname{Re} z \, dz = \int_{0}^{1} \left\{ \operatorname{Re} \gamma_{1}(t) \right\} \gamma_{1}'(t) \, dt$$

$$= \int_{0}^{1} (1 - t)(-1 + i) \, dt$$

$$= (-1 + i) \left[ -\frac{(1 - t)^{2}}{2} \right]_{0}^{1}$$

$$= \frac{-1 + i}{2}$$

(b) 3 marks

Let f(z) = 1/z, F(z) = Log z and the region  $R = \mathbb{C} - \{x : x \le 0\}$ .

f is continuous on R and F is a primitive of f on R (Unit A4, Section 3, Para. 4). Thus, by the Fundamental Theorem of Calculus (Unit B1, Section 3, Para. 2), since  $\Gamma_1$  is a contour in R

$$\begin{split} \int_{\Gamma_{i}} \frac{1}{z} dz &= F(i) - F(1) \\ &= Log i - Log 1 \\ &= \left\{ log_{e} \middle| i \middle| + i Arg i \right\} - 0 \qquad \text{(Unit A2, Section 5, Para. 1)} \\ &= \frac{i\pi}{2} \end{split}$$

(c) 1 mark

Since  $\Gamma_2$  is also a contour in R with the same start and end points as  $\Gamma_1$  then by the Contour Independence Theorem (Unit B1, Section 3, Para. 4)

$$\int_{\Gamma_2} \frac{1}{z} dz = \int_{\Gamma_1} \frac{1}{z} dz = \frac{i\pi}{2}$$

(a) 2 marks

The zeros of  $z^2 + 2$  are at  $z = \pm 2^{1/2}$  i. These are outside the contour  $C_1$ .

 $\mathbf{R} = \{z : |z| < 2\}$  is a simply-connected region (Unit B2, Section 1, Para. 3) and  $\frac{z^3}{z^2 + 2}$  is analytic (quotient rule) on  $\mathbf{R}$ . Since  $C_1$  is a closed contour in  $\mathbf{R}$  then by Cauchy's Theorem (Unit B2, Section 1, Para. 4)

$$\int_{C_1} \frac{z^3}{z^2 + 2} \, dz = 0$$

(b) 3 marks

[ Follow similar strategy to that given in Unit B2, Section 4, Para. 3]

Both the zeros of  $z^2 + 2$  are inside the contour  $C_2$ .

$$\frac{1}{z^2 + 2} = \frac{1}{(z - i\sqrt{2})(z + i\sqrt{2})} = \frac{1}{2i\sqrt{2}} \left\{ \frac{1}{z - i\sqrt{2}} - \frac{1}{z + i\sqrt{2}} \right\}$$

Therefore 
$$\int_{C_2} \frac{z^3}{z^2 + 2} dz = \frac{1}{2i\sqrt{2}} \left\{ \int_{C_2} \frac{z^3}{z - i\sqrt{2}} dz - \int_{C_2} \frac{z^3}{z + i\sqrt{2}} dz \right\}$$

As  $\mathbb{C}$  is a simply-connected region which contains the simple-closed contour  $C_2$  (Unit B2, Section 1, Para. 1) and  $f(z) = z^3$  is analytic on  $\mathbb{C}$  then using Cauchy's Integral Formula (Unit B2, Section 2, Para. 1) gives

$$\int_{C_2} \frac{z^3}{z^2 + 2} dz = \frac{1}{2i\sqrt{2}} \left\{ 2\pi i f(i\sqrt{2}) - 2\pi i f(-i\sqrt{2}) \right\}$$
$$= \frac{\pi}{\sqrt{2}} \left\{ -2\sqrt{2}i - 2\sqrt{2}i \right\} = -4\pi i$$

(c) 3 marks

 $C_2$  is a simply-closed contour in the simply-connected region  $\mathbb{C}$  and  $f(z) = z^3$  is analytic on  $\mathbb{C}$ .

Since the point -2 lies in  $C_2$  then by Cauchy's n'th Derivative formula (Unit B2, Section 3, Para. 1), with n = 1 and  $\alpha = -2$ , we have

$$\int_{C_2} \frac{z^3}{(z+2)^2} dz = \frac{2\pi i}{!!} f'(-2) = 2\pi i * 3(-2)^2 = 24\pi i$$

Identical to 2001 Question 5.

#### 1998 Question 6

8 marks

f and g are not direct analytic continuations of each other since  $D_0 \cap D_1 = \phi$ .

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^2$$
 is a geometric series with sum  $\frac{1}{1-\frac{z}{2}} = \frac{2}{2-z}$  on  $D_0$ .

$$\sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^2 \text{ is a geometric series with sum } \frac{1}{1-\frac{2}{z}} = \frac{z}{z-2} \text{ on } D_1.$$

Therefore 
$$g(z) = -\sum_{n=1}^{\infty} \left(\frac{2}{z}\right)^2 = -\frac{2}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^2 = -\frac{2}{z} \left(\frac{z}{z-2}\right) = \frac{2}{2-z}$$
 on  $D_1$ .

Let 
$$h(z) = \frac{2}{2-z}$$
 on **C** - {2}.

f and h are analytic functions whose domains are regions and f(z) = h(z) for  $z \in D_0 \subseteq D_0 \cap (\mathbb{C} - \{2\})$  then h(z) is an analytic continuation of f(z) to  $\mathbb{C} - \{2\}$  (Unit C3, Section 1, Para. 1).

Since the domains of h and g are regions and h(z) = g(z) for  $z \in D_1 \subseteq (\mathbb{C} - \{2\}) \cap D_1$  then g(z) is an analytic extension of h(z) to  $D_1$ .

As the functions  $(f, D_0)$ ,  $(h, \mathbb{C} - \{2\})$ ,  $(g, D_1)$  form a chain then f and g are indirect analytic continuations of each other (Unit C3, Section 2, Para. 3).

#### (a) 1 mark

The conjugate velocity function  $\overline{q}(z) = 1/z^2$ .

Since q is a steady continuous 2-dimensional velocity function on the region  $\mathbb{C}$ –  $\{0\}$  and  $\overline{q}$  is analytic on  $\mathbb{C}$ –  $\{0\}$  then q is a model fluid flow (Unit D2, Section 1, Para. 14).

## (b) 5 marks

On  $\mathbb{C} - \{0\}$ ,  $\Omega(z) = -\frac{1}{z}$  is a primitive of  $\overline{q}$ . Therefore  $\Omega$  is a complex potential function for the flow (Unit D2, Section 2, Para. 1).

The stream function 
$$\Psi(x,y) = \operatorname{Im}\Omega(z)$$
 (Unit D2, Section 2, Para. 4) 
$$= \operatorname{Im}\left(-\frac{1}{x+iy}\right) \quad , \text{ where } z = x+iy, (x,y) \neq (0,0)$$
 
$$= \operatorname{Im}\left(-\frac{x-iy}{x^2+y^2}\right) = \frac{y}{x^2+y^2}$$

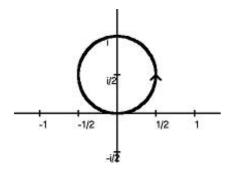
A streamline through the point i satisfies the equation

$$\frac{y}{x^2 + y^2} = \Psi(0,1) = 1$$
 (Unit D2, Section 2, Para. 4)

Therefore the streamline through i has the equation  $x^2 + y^2 - y = 0$  or

$$x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$$

Since q(i) = -1 (-x direction) then the direction of flow is as shown.



## (c) 2 marks

The flux of q across the unit circle  $C = \{z : |z| = 1\}$  is (Unit D2, Section 1, Para. 10)

$$\operatorname{Im}\left(\int_{C} \overline{q}(z)dz\right) = \operatorname{Im}\left(\int_{C} \frac{1}{z^{2}}dz\right) = 0$$
 by Cauchy's Residue Theorem.

(a) 3 marks

Same as 2002 Qu. 8(a).

- (b) 5 marks
- (b)(i) [Unit D3, Exercise 4.1(c)]

$$P_c(0) = -1 + i$$
.

$$P_c^2(0) = (-1+i)^2 + (-1+i) = -2i + (-1+i) = -1-i.$$

$$P_c^3(0) = (-1-i)^2 + (-1+i) = 2i + (-1+i) = -1 + 3i.$$

As  $\left|P_c^3(0)\right| > 2$  then c does not lie in the Mandelbrot set (Unit D3, Section 4, Para. 5).

(b)(ii)

Since  $|c+1| = |-\frac{1}{8}i| = \frac{1}{8} < \frac{1}{4}$  then  $P_c$  has an attracting 2-cycle (Unit D3, Section 4, Para. 9). Therefore c belongs to the Mandelbrot set (Unit D3, Section 4, Para. 8).

(a) 8 marks

Putting z = x + iy we have

$$f(z) = \overline{z} - |z|^2 = (x - iy) - (x^2 + y^2) = u(x, y) + iv(x, y),$$
  
where  $u(x,y) = x - x^2 - y^2$ , and  $v(x,y) = -y$ .

$$\frac{\partial u}{\partial x}\big(x,y\big) = 1 - 2x \;, \qquad \frac{\partial u}{\partial y}\big(x,y\big) = -2y \qquad \qquad \frac{\partial v}{\partial x}\big(x,y\big) = 0 \;, \quad \frac{\partial v}{\partial y}\big(x,y\big) = -1$$

If f is differentiable the Cauchy-Riemann equations (Unit A4, Section 2, Para. 1) hold.

They will hold at (a, b) if

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}(\mathbf{a}, \mathbf{b}) = 1 - 2\mathbf{a} = -1 = \frac{\partial \mathbf{v}}{\partial \mathbf{y}}(\mathbf{a}, \mathbf{b}), \text{ and}$$

$$\frac{\partial v}{\partial x}\big(a,b\big) = 0 = 2b = -\frac{\partial u}{\partial y}\big(a,b\big)$$

Since the Cauchy-Riemann equations only hold at (1, 0) then f is not differentiable on  $\mathbb{C} - \{1\}$ .

As f is defined on the region  $\mathbb{C}$ , and the partial derivatives  $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ 

- 1. exist on C
- 2. are continuous at (1, 0).
- 3. satisfy the Cauchy-Riemann equations at (1, 0)

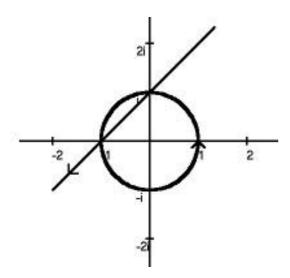
then, by the Cauchy-Riemann Converse Theorem (Unit A4, Section 2, Para. 3), f is differentiable at (1, 0).

Therefore f is only differentiable at (1, 0).

- (b) 10 marks
- (i) g(z) is analytic on the region  $\mathbb{C} \{0\}$  (Unit A4, Section 3, Para. 4), and  $g'(z) = -\frac{2}{z^3}$  on  $\mathbb{C} \{0\}$ .

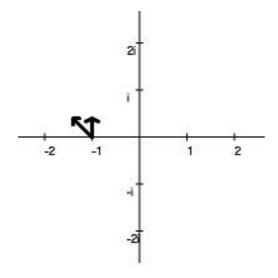
As  $g'(i) = -\frac{2}{i^3} = -2i \neq 0$  and g is analytic at i , then g is conformal at z = i. (Unit A4, Section 4, Para. 6)

(ii)  $\pi/2$  is in the domain of  $\gamma_1$  so  $\gamma_1(\pi/2) = e^{i\pi/2} = i$ . 0 is in the domain of  $\gamma_2$  so  $\gamma_2(0) = i$ . Therefore  $\Gamma_1$  and  $\Gamma_2$  meet at the point i.



(iii) As g is analytic on  $\mathbb{C}$ -  $\{0\}$  and  $g'(i) \neq 0$  then a small disc centred at i is mapped approximately (Unit A4, Section 1, Para. 11) to a small disc centred at g(i) = -1. The disc is rotated by Arg  $(g'(i)) = \text{Arg } -2i = -\pi/2$ , and scaled by a factor |g'(i)| = 2.

In the diagram below  $g(\Gamma_1)$  is the vertical line.



- (a) 9 marks
- (i) There are poles at z = 0, and z = 3. As  $\lim_{z \to 0} (z 0)f(z) = -\frac{1}{3}$  and  $\lim_{z \to 3} (z 3)f(z) = \frac{1}{3}$  then these are simple poles.
- (ii) Let z = 1 + h. For  $z \ne 0, 3$  we have

$$f(z) = \frac{1}{(1+h)(h-2)} = -\frac{1}{3} \left\{ \frac{1}{2-h} + \frac{1}{1+h} \right\}$$

$$= -\frac{1}{3} \left\{ \frac{1}{2(1-h/2)} + \frac{1}{h(1+1/h)} \right\}$$

As 1 < |z - 1| = |h| < 2 then |h/2| < 1 and |1/h| < 1. Therefore

$$f(z) = -\frac{1}{6} \left\{ 1 + \left(\frac{h}{2}\right) + \left(\frac{h}{2}\right)^2 + \dots \right\} - \frac{1}{3h} \left\{ 1 + \left(-\frac{1}{h}\right) + \left(-\frac{1}{h}\right)^2 + \dots \right\}$$

when 1 < |h| < 2. (Unit B3, Section 3, Para. 5)

$$= \dots + \frac{1}{3(z-1)^2} - \frac{1}{3(z-1)} - \frac{1}{6} - \frac{(z-1)}{12} - \frac{(z-1)^2}{24} + \dots$$

when 
$$1 < |z - 1| < 2$$
.

(b) 9 marks

(i)

$$\cos z - 1 = -\frac{z^2}{2!} + \frac{z^4}{4!} - \dots$$
, for  $z \in \mathbb{C}$ . (Unit B3, Section 3, Para. 5)  
 $e^z = 1 + z + \frac{z^2}{2!} + \dots$ , for  $z \in \mathbb{C}$ . (Unit B3, Section 3, Para. 5)

By the Composition Rule (Unit B3, Section 4, Para. 3)

$$g(z) = 1 + \left(-\frac{z^2}{2!} + \frac{z^4}{4!} - \dots\right) + \frac{1}{2!} \left(-\frac{z^2}{2!} + \frac{z^4}{4!} - \dots\right)^2 + \dots$$
$$= 1 - \frac{z^2}{2} + z^4 \left(\frac{1}{24} + \frac{1}{8}\right) + \dots = 1 - \frac{z^2}{2} + \frac{z^4}{6} + \dots \text{ for } z \in \mathbb{C}.$$

Since g is analytic on  $\mathbb{C}$  then by Taylor's Theorem (Unit B3, Section 3, Para. 1) this is the unique power series for g on  $\mathbb{C}$ .

(ii)

 $z^3$  g(1/z) is analytic on the punctured disc  $\mathbb{C}$  -  $\{0\}$ .

The Laurent series about 0 for  $z^3$  g(1/z) on this disc is

$$z^{3}g\left(\frac{1}{z}\right) = z^{3} - \frac{z}{2} + \frac{1}{6z} + \dots = \sum_{n=-\infty}^{\infty} a_{n} z^{n}$$

Therefore as C is a circle with centre 0 (Unit B4, Section 4, Para. 2)

$$\int_{C} z^{3} g\left(\frac{1}{z}\right) dz = 2\pi i a_{-1} = 2\pi i \left(\frac{1}{6}\right) = \frac{\pi i}{3}$$

(a) 8 marks

(a)(i)

Let 
$$g(z) = 3z^2$$
 and  $f(z) = z^3 + 3z^2 + 1$ .

Using the Triangle Inequality (Unit A1, Section 5, Para. 2) then on  $\Gamma=\{z:|z|=1\}$  we have  $\mid f(z)-g(z)\mid=\mid z^3+1\mid\leq\mid z^3\mid+1=2$   $<3=\mid 3z^2\mid=\mid g(z)\mid$ 

As f and g are analytic (Unit A4, Section 1, Para. 7) on the simply-connected region  $\mathbb{C}$ , and  $\Gamma$  is a simple-closed contour in  $\mathbb{C}$  then by Rouché's Theorem (Unit C2, Section 2, Para. 4) f has the same number of zeros inside  $\Gamma$  as g.

Therefore f(z) = 0 has 2 solutions in the disc  $\{z : |z| < 1\}$ .

Let 
$$g(z) = z^3$$
 and  $\Gamma = \{ z : |z| = 4 \}$ .

Using the Triangle Inequality then on  $\Gamma$  we have

$$| f(z) - g(z) | = |3z^{2} + 1| \le |3z^{2}| + 1 = 49$$
  
 $< 64 = |z^{3}| = |g(z)|$ 

As f and g are analytic on the simply-connected region  $\mathbb{C}$ , and  $\Gamma$  is a simple-closed contour in  $\mathbb{C}$  then by Rouché's Theorem f has the same number of zeros inside  $\Gamma$  as g. Therefore f(z) = 0 has 3 solutions in the disc  $\{z : |z| < 4\}$ .

On 
$$\{z : |z| = 1\}$$
 then (Unit A1, Section 5, Para. 3e)  
 $|f(z)| = |3z^2 + z^3 + 1| \ge |3z^2| - |z^3| - 1 = 3 - 1 - 1 > 0.$ 

As there are no zeros on  $\{z: |z|=1\}$  then there is a single solution on the annulus  $\{z: 1 < |z| < 4\}$ .

(a)(ii) Taking the conjugate of 
$$f(z) = 0$$
 gives

$$\left(\overline{z}\right)^3 + 3\left(\overline{z}\right)^2 + 1 = 0$$

Therefore if z is a solution so is its conjugate. As there is only one solution in the annulus then it it must be real. If z is real then  $3z^2 + 1 > 0$  so if f(z) = 0 then  $z^3$  is negative.

Therefore the root in the annulus is real and negative.

(b) 10 marks

(b)(i)

Let 
$$f(z) = \exp(z^3)$$
 and  $R = \{z : |z| < 3\}$ .

If we write 
$$z = r e^{i\theta}$$
 then  $z^3 = r^3 e^{i3\theta}$  and  $|\exp(z^3)| = \exp(Re z^3) = \exp(r^3 \cos 3\theta)$ .

Since f is analytic on the bounded region R and continuous on R then, by the Maximum Principle, there exists an  $\alpha \in \partial R$  such that  $|f(z)| \le |f(\alpha)|$  for all  $z \in \overline{R}$  (Unit C2, Section 4, Para. 4).

On  $\partial R$  each point can be written in the form  $z = 3e^{i\theta}$  for  $\theta \in [0, 2\pi]$ .

Therefore max 
$$\{ |\exp(z^3)| : z \in \partial R \}$$
  
= max  $\{ |\exp(27 \cos 3\theta)| : \theta \in [0, 2\pi] \}$   
=  $e^{27}$ .

The maximum occurs when  $\cos 3\theta = 1$ . Therefore the maximum is attained when z = 3,  $3 \exp(2\pi/3)$ , and  $3 \exp(4\pi/3)$ .

For points in R we have r < 3, so the maximum value cannot be attained elsewhere in the disc  $|z| \le 3$ .

(b)(ii)

If 
$$|z|=3$$
 then using the Triangle Inequalities (Unit A1, Section 5, Para. 2)  $|\overline{z}+1| \leq |\overline{z}|+1=4$ , and  $|\overline{z}-1| \geq ||\overline{z}|-1|=|3-1|=2$ .

Hence on the contour C we have

$$\left| \frac{\overline{z}+1}{\overline{z}-1} \exp(z^3) \right| \le \frac{4}{2} * e^{27} = 2e^{27}.$$

The length of the contour C is  $2\pi * 3 = 6\pi$ .

Since  $\frac{\overline{z}+1}{\overline{z}-1} \exp(z^3)$  is continuous on C then, by the Estimation Theorem (Unit B1, Section 4, Para. 3), we have

$$\left| \int_{C} \frac{\overline{z} + 1}{\overline{z} - 1} \exp(z^{3}) dz \right| \leq 6\pi * 2e^{27} = 12\pi e^{27}.$$

(a) 5 marks

Using the Implicit Formula (Unit D1, Section 2, Para. 11) then we have

$$\frac{\left(z-1\right)}{\left(z-\infty\right)}\frac{\left(2i-\infty\right)}{\left(2i-1\right)} = \frac{\left(w-i\right)}{\left(w+1\right)}\frac{\left(\infty+1\right)}{\left(\infty-i\right)} \Longrightarrow \frac{z-1}{2i-1} = \frac{w-i}{w+1}$$

Hence wz - w + z - 1 = 2iw + 2 - w + i. Rearranging gives w(z - 2i) = -z + (3 + i).

Therefore the required extended Möbius transformation is  $\hat{f}$ , where

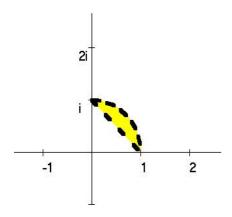
$$f(z) = \frac{-z + (3+i)}{z - 2i}$$

(b) 13 marks

(b)(i)

If z = x + iy then

Im 
$$z > 1$$
 - Re  $z \Rightarrow y > 1 - x \Rightarrow x + y > 1$ .



(b)(ii)

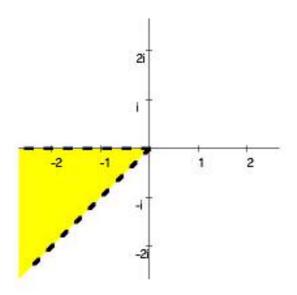
As  $f_1$  is a Möbius transformation and R is a region in the domain of  $f_1$  then  $f_1(R)$  is a region and the boundary of R maps onto the boundary of f(R) (Unit D1, Section 4, Para. 3).

The boundary of  $R = D_1 \cup D_2$ , where  $D_1 = \{z : Re \ z + Im \ z = 1, 0 \le Re \ z \le 1 \}$  and  $D_2 = \{z : |z| = 1, 0 \le Arg \ z \le \pi/2\}$ 

As  $f_1(i) = 0$  and  $f_1(1) = \infty$  then both  $D_1$  and  $D_2$  are mapped to extended lines which start at the origin. Since the angle between  $D_1$  and  $D_2$  at i is  $\pi/4$  and the transformation  $f_1$  is conformal, then the angle between the lines at the origin is also  $\pi/4$ .

$$(1+i)/2 \in D_1 \text{ and } \ f_1\!\!\left(\frac{1+i}{2}\right)\!=\!\frac{\frac{1+i}{2}-i}{\frac{1+i}{2}-1}\!=\!\frac{1-i}{-1+i}\!=\!-1\,.$$

Therefore  $D_1$  is mapped to the extended negative real axis  $\{x : x \le 0\} \cup \{\infty\}$ . As the interior of the region R is on the left as we travel along  $D_1$  from i to (i + 1)/2, then this is also the case when we travel from f(i) to f((i + 1)/2) in the transformed region. Therefore the transformed region is as shown below.



$$f(R) = \{z : -\pi < Arg \ z < -3\pi/4\}$$

(b)(iii)

 $w = g(z) = z^4$  is a one-one conformal mapping (Unit D1, Section 4, Para. 5) that maps the image of R to the upper half plane. Therefore a one-one conformal mapping from R to the upper-half plane is

$$g_0 f_1(z) = \left(\frac{z-i}{z-1}\right)^4$$
.