
G52ADS-E1

University of Nottingham

DEPARTMENT OF COMPUTER SCIENCE

A LEVEL 2 MODULE, SEMESTER 1 1997{1998

ALGORITHMS AND DATA STRUCTURES
(Course G52ADS)

Time allowed TWO hours

Candidates must NOT start writing their answers until told to do so

Credit will be given for the best THREE answers

Marks available for sections of questions are shown in brackets in the right-hand margin

Only silent, self-contained calculators with a single-line display are permitted in this

examination. Dictionaries are not allowed with one exception. Those whose �rst

language is not English may use a dictionary to translate between that language and

English provided that neither language is the subject of this examination.

1 The overall structure of the quicksort algorithm is

quicksort(vectorl)
DoQuickSort(vectorl, 1, N)

DoQuickSort(vectorl, first#, last#)
if last > first

pivot := Partition(vector, first, last)

DoQuickSort(vector, first, pivot-1)

DoQuickSort(vector, pivot+1, last)

(a) Give a (pseudo-code) implementation of the Partition algorithm, and describe
how quick sort works. (9)

(b) The best case time complexity of quick sort is O(n lg n). Sketch a proof of this
result. (8)

(c) What is the worst case time complexity of quick sort, and under what circum-
stances does it arise? (2)

(d) Given an unordered vector of integers, suggest how you could use the Partition
algorithm to �nd the median value. (6)

G52ADS Turn Over



2 G52ADS-E1

2 This question concerns three di�erent data structures and search algorithms, each
appropriate for a di�erent situation.

(a) You need to read in a (known length) sequence of integers presented in sorted
order, and store them in some data structure. Once the integers have been read
in, there will be no further insertions or deletions. The values of the integers
have a uniform distribution.

(i) What data structure would you use to store the integers? (1)

(ii) What algorithm would you use to search for whether a given integer is
present? Give pseudo-code for the search algorithm. (4)

(b) The integers are read in unsorted order, and stored in some data structure.
Further insertions and deletions are possible.

(i) What data structure would you use to store the integers? (1)

(ii) Give pseudo-code for the algorithm to search for an integer. (4)
(iii) Describe the procedures for inserting and deleting new integers (code not

required). (5)

(c) The integers are read in sorted order, and stored in some data structure. Further
insertions are possible, but there are to be no deletions. New items to be inserted
will be presented in roughly sorted order.

(i) What data structure would you use to store the integers, and what search
algorithm would you use? (2)

(ii) Describe the operations required to insert a new integer (code not required).
(8)

G52ADS



3 G52ADS-E1

3 You are asked to design a program to count word frequencies. This reads in an ASCII
text �le, and builds a running total of how many times the words in it (re)occur: e.g.
the 57 times; is 15 times; re�nement 1 time. The program should print out a frequency
count of the words in frequency order, with the least frequent words printed �rst:
e.g.

refinement: 1

object: 1

. . .
is: 15

. . .
the: 57

Describe the data structures and algorithms you would employ in the program, ex-
plaining how they are to be used, and the reasons for your choices. Where appro-
priate, specify ADTs, pseudo-code for signi�cant ADT methods employed, and an
outline of the entire algorithm (25)

[Hints: (a) You can assume the existence of a procedure nextWord that reads the next
word in the �le and returns a string for the word, all in lower case. The procedure
returns ``EOF'' at the end of the �le.
(b) You may also assume a data structure for strings that supports comparison
operators like >=, ==, <.
(c) Word frequencies obey Zipf's law: There will be a large number of di�erent words
occurring at low frequencies, e.g. 1, 2 or 3 times in a text; and a small number of
common words occurring at high frequencies, typically with large gaps between their
frequencies. You may wish to take account of this when choosing a space e�cient
data structure to store the words and frequencies in frequency sorted order.]

4 Write notes on each of the following:

(a) The O-notation for complexity, and its pitfalls. (5)

(b) Proving the correctness of algorithms. (5)

(c) The merits and demerits of vector and linked-list implementations of linear
collections. (5)

(d) Eliminating recursion. (5)

(e) Divide-and-conquer algorithms. (5)

G52ADS Turn Over



4 G52ADS-E1

5 (a) Show the adjacency matrix and adjacency list representations for the following
graph: (3)

l l �


�
	

l l l

-

�

6

?�

6

�
Z
Z
Z
Z
Z
ZZ~

v1 v2 v3

v4 v5 v6

(b) Trace a depth-�rst search through the graph, showing how each vertex is marked
with start and �nish times. Assume this starts at vertex v1. (7)

(c) The make utility in UNIX constructs a precedence graph, showing how some
�les are dependent on others. A typical precedence graph would be:

������������9

�
�
�/

XXXXXXXXXXXz

?

Z
Z
Z
Z
Z
Z~

PPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXz

�
�

�
��	

J
J
J
JĴ

HHHHHHHHHj

PPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXXXXXXz

C
C
C
CCW

Q
Q
Q
Q
Q
QQs

prog.o subprog1.o subprog2.o

prog

prog.C lib.H subprog1.C hdr1.H subprog2.C hd2.C

If the date stamp on the �le prog is older than any of the dates on prog.o,
subprog1.o or subprog2.o, then the �le prog must be rebuilt (via compilation
or linking). The �le prog is said to be dependent on prog.o, subprog1.o and
subprog2.o.

Modify the algorithm for the depth �rst search of graphs to suggest how the
make utility determines which �les to rebuild, and does the rebuilding. (15)

[Hints: You may assume the existence of a function outOfDate(file), which
returns true if a �le is older than any of its dependents, and hence needs re-
building. You may also assume the existence of a function rebuild(file) to
rebuild out-of-date �les.

You may also assume a graph data type, whose vertices are identi�ed by �le
names, and which provides a method adjacent(v) that returns the set of ver-
tices adjacent to v.

Note that a �le can only be rebuilt after any out of date �les on which it depends
have also been rebuilt. Your algorithm should thus process the precedence graph
bottom up.]

G52ADS-E1 End


