
G5BADS-E1

The University of Nottingham

SCHOOL OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

A LEVEL B MODULE, AUTUMN SEMESTER 2003-2004

ALGORITHMS AND DATA STRUCTURES

(Course G5BADS)

Time allowed TWO Hours

Candidates must NOT start writing their answers until told to do so

Answer QUESTION ONE and THREE other questions

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first language
is not English may use a dictionary to translate between that language and
English provided that neither language is the subject of this examination. No
electronic devices capable of storing and retrieving text may be used.

DO NOT turn your examination paper over until instructed to
do so.

G5BADS-E1 Turn Over



- 2 - G5BADS-E1

1. This multiple choice question is compulsory. In each part, select one
answer. For parts (b) to (i), you get 3 points if you select the right
answer and 0 if you don’t. For part (a) you get maximum of one point.

(a) Binary search is only guaranteed to work if the collection to be
searched is ordered: (1)

i. yes

ii. no

(b) Which one of the following sorting algorithms has non-trivial (not
O(1)) space complexity? (3)

i. bubble sort

ii. selection sort

iii. insertion sort

iv. merge sort

v. quick sort

(c) An algorithm’s memory usage is described by the following func-
tion: s(n) = 10n+ log2n. What is the algorithm’s space complex-
ity (choose the tightest upper bound): (3)

i. O(1)

ii. O(log n)

iii. O(n)

iv. O(n log n)

v. O(n2)

Question continued overleaf

G5BADS-E1 Turn Over



- 3 - G5BADS-E1

(d) What is the tightest big O upper bound on the growth rate of
running time for the following algorithm (assuming multiplication
of integers is done in constant time): (3)

int power (int n, int k){

int result = n;

for (int i = 1; i < k; i++){

result = result * n;

}

}

i. O(n)

ii. O(k)

iii. O(nk)

iv. O(n ∗ k)

v. O(1)

(e) Which one of the following is an invariant of the loop:

int sum = 0;

for (int i = 0; i < array.length; i++){

sum += array[i];

} (3)

i. sum = 0

ii. sum = Σj<iarray[j]

iii. sum = Σj≤iarray[j]

iv. sum = Σj≤i+1array[j]

v. sum = Σj<narray[j] where n = array.length.

(f) Which data structure has reliably efficient (logarithmic) perfor-
mance for search, insertion and deletion: (3)

i. ordered list

ii. ordered array

iii. binary search tree

iv. balanced binary search tree

v. unordered list

Question continued overleaf

G5BADS-E1 Turn Over



- 4 - G5BADS-E1

(g) A sorting algorithm heapsort sorts a collection of items by creating
a heap data structure, inserting items to be sorted into the heap,
and then repeatedly removing the top of the heap and placing it
into an ordered collection until the heap is empty. What is the
big O upper bound on heapsort’s space usage? (3)

i. O(1)

ii. O(log n)

iii. O(n)

iv. O(n log n)

v. O(n2)

(h) Which of the following statements is true: (3)

i. Dijkstra’s shortest path algorithm only works on directed
acyclic graphs

ii. Dijkstra’s algorithm shortest path algorithm does not work
on graphs where all edges have the same weight

iii. If all edges have the same weight, Dijkstra’s algorithm will
visit them in the same order as breadth-first search

iv. If all edges have the same weight, Dijkstra’s algorithm will
visit them in the same order as depth-first search

v. If all edges have the same weight, Dijkstra’s algorithm will
return the same shortest path value for all pairs of nodes

(i) Suppose that running time of an algorithm has quadratic growth
rate. On inputs of size 1000 it runs in 20 ms. What would be your
estimate of its running time on inputs of size 10000? (3)

i. 40 ms

ii. 400 ms

iii. 4000 ms

iv. 200 ms

v. 2000 ms

G5BADS-E1 Turn Over



- 5 - G5BADS-E1

2. (a) Give method signatures and pre- and postconditions for the meth-
ods of a Bounded Stack ADT. Bounded stacks are stacks which
have a fixed maximal size and no items can be pushed onto the
stack after it is filled to capacity. Assume that items to be pushed
on the stack are of type Object. Give methods for pushing items
on the stack, popping the stack, peeking at the top of the stack,
checking whether the stack is empty or full. (10)

(b) Write a Java implementation of this ADT using an array. You
may also need to write classes for exception objects which are
thrown when method preconditions do not hold. (15)

3. (a) Explain how quicksort algorithm works. Trace it on the following (10)
array: 6,3,2,5,4, assuming the pivot is chosen randomly.

(b) Give an implementation of quicksort in Java, C, Pascal or Haskell.
(10)

(c) What is quicksort’s worst case performance? When does it hap-
pen? (5)

4. (a) What is a B-tree? (6)

(b) Where are B-trees used and why? (3)

(c) Explain how search and insertion in B-trees works (in English or
pseudocode, you may also use diagrams). (10)

(d) The B-tree below holds maximum 4 items per node. Draw the
result of inserting an item with key 45 in this tree: (6)

5,40,50,60

1,2,3,4 31,32,33,34 41,42,43,44 52,53,55,59 70,80,90,95

G5BADS-E1 Turn Over



- 6 - G5BADS-E1

5. (a) Explain what are hash tables and hash functions. Explain what (11)
is meant by the terms ‘separate chaining’ and ‘open addressing’.
Briefly describe three strategies of open addressing.

(b) Suppose you need to hash Computer Science module codes; for
simplicity assume that they all start with G5 followed by one
of [1,2,3,A,B,C] followed by any three letters [A-Z], for example
G5BADS or G51MCS. Design a perfect (no collisions) hash func-
tion for this task. How many possible values does it have and how (7)
large the corresponding data structure should be (you do not have
to compute the exact number, just write a formula).

(c) Assume that Computer Science department never has more that
50 different modules on its books. Design a hash table which
would have a load factor between 50% and 100%. How large will
it be? Give a suitable hash function. (7)

6. (a) Write an algorithm (in Java or pseudocode) which given an expres-
sion (a string) containing parentheses returns true if the parenthe-
ses are balanced and properly nested, and false otherwise. Explain
how your algorithm works and why it is correct. (10)

(b) What is the time complexity of your algorithm (use big O notation
and justify your answer). (5)

(c) What is the space complexity of your algorithm (use big O nota-
tion and justify your answer). (5)

(d) How would you extend your algorithm to cope with more than
one kind of brackets? Your revised algorithm should not allow
improper nestings like ‘‘{(a})’’. (5)

G5BADS-E1 End


