
Tutorial 6: Lab work solutions

1.
The explicit scheme is 
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In this case 
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 and the values of  i are 1,…,5.
At x = 0 (where i = 1) the Dirichlet boundary conditions give 
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At x = 1 (where i = 5) the zero Neumann boundary conditions give 
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This value of 
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 was probably chosen because it gives a value of r that is very close to 0.5, the limit of stability for the explicit scheme.

2.
The explicit scheme is 
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In this case 
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 and the values of  i are 1,…,6.
At x = 0 (where i = 1) the Neumann boundary conditions are 
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. Using central differences to approximate the derivative gives 
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At x = 1.0 (where i = 5) the zero Neumann boundary conditions give 
[image: image10.wmf]j

j

u

u

,

4

6

=

.

When (t = 0.005 the scheme starts to become unstable, although r = 0.5 (which theoretically should be stable for the explicit scheme). However the non-standard boundary conditions may have introduced additional errors.
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