THE UNIVERSITY

of LIVERPOOL

1. Give the definition of ring homomorphism.

Say which of the following are ring homomorphisms, giving reasons. In cases of positive answer, find $\operatorname{Ker} \varphi$ and $\operatorname{Im} \varphi$.

- (a) $\varphi: M_2(\mathbf{R}) \to \mathbf{R}, \qquad \varphi(A) = \det A.$
- (b) $\varphi: M_2(\mathbf{R}) \to \mathbf{R}, \qquad \varphi(A) = \frac{1}{2} \operatorname{Tr} A.$
- (c) $\varphi: \mathbf{Z} \to \mathbf{Z}$, $\varphi(n) = n^3$.
- (d) $\varphi : \mathbf{Z}_3[x] \to \mathbf{Z}_3[x], \qquad \varphi(p) = p^3.$

[20 marks]

Consider the set of matrices

$$S = \left\{ \left(\begin{array}{cc} a & b \\ 0 & a \end{array} \right) \middle| a, b \in \mathbf{R} \right\},\,$$

with the usual addition and multiplication of matrices.

- (a) Show that S is a subring of the ring $M_2(\mathbf{R})$, and it is commutative. Is S an ideal of $M_2(\mathbf{R})$? Give reasons.
 - (b) Let I be the subset of S

$$I = \left\{ \left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array} \right) \,\middle|\, x \in \mathbf{R} \right\}.$$

Show that I is an ideal of S, and it is a principal ideal.

- (c) Describe the quotient ring S/I, and show that it a field.
- (d) Show that I is the only proper ideal of S.

[20 marks]

3. Consider the Euclidean domain $\mathbf{R}[x]$, and fix two nonzero polynomials $a, b \in \mathbf{R}[x]$ of it.

Denote by I the set $I = \{am + bn \mid m, n \in \mathbf{R}[x]\}.$

- (a) Show that I is an ideal of $\mathbf{R}[x]$.
- (b) Show that I is a principal ideal of $\mathbf{R}[x]$.
- (c) Compute a generator for I in each of the following cases:
 - (i) $a = x^2 + x$, $b = x^2 + 2x + 1$; (ii) $a = x^2 + x$, $b = x^5 2x + 1$.

[20 marks]

THE UNIVERSITY of LIVERPOOL

- **4.** Let F be a field with characteristic p and p^n elements.
 - (a) Show that

$$\varphi: F \to F$$
 given by $\varphi(a) = a^p$

is an automorphism of F.

- (b) Show that $\varphi = \operatorname{Id}_F \iff n = 1$.
- (c) Show that Id_F is the *only* automorphism of $F \iff n = 1$.

[20 marks]

5.

Find the minimal polynomials in $\mathbf{Q}[x]$ of

$$\alpha = \sqrt{3} - 1, \qquad \beta = \sqrt{3} + i$$

and show that they are irreducible in $\mathbf{Q}[x]$.

Show that $\alpha \in \mathbf{Q}[\beta]$. Hence find the degrees

$$[\mathbf{Q}[\alpha]:\mathbf{Q}], \qquad [\mathbf{Q}[\beta]:\mathbf{Q}], \qquad [\mathbf{Q}[\beta]:\mathbf{Q}[\alpha]].$$

[20 marks]

- **6.** Consider the polynomial $a(x) = x^3 x^2 + 2x + 1$.
- (a) Show that a(x) is irreducible in $\mathbf{Z}[x]$. Decide whether it is reducible in $\mathbf{Q}[x]$ and in $\mathbf{Z}_3[x]$; give its factorisation into primes in each case where it is reducible.
- (b) Consider any polynomial $b(x) \in \mathbf{Q}[x] \setminus \{0\}$, of degree at most 2. Explain why there exist two polynomials $m(x), n(x) \in \mathbf{Q}[x]$ with

$$a(x)m(x) + b(x)n(x) = 1.$$

(c) Now let $\alpha \in \mathbf{C}$ be a zero of a(x), and let

$$\mathbf{Q}[\alpha] = \{ p(\alpha) \mid p(x) \in \mathbf{Q}[x] \}.$$

Show that you can limit yourself to elements p(x) of degree at most 2. Show that any nonzero element $p(\alpha) \in \mathbf{Q}[\alpha]$ has a mutiplicative inverse in $\mathbf{Q}[\alpha]$. In particular find the inverse of $1 + \alpha^2$.

[20 marks]

THE UNIVERSITY of LIVERPOOL

- 7. Let F be a field with q elements.
 - (a) Find the number of points in $P^2(F)$.
- (b) Find the number of lines in $P^2(F)$, and the number of points on each line.
- (c) Describe how to realise a 2-design from the lines of $P^2(F)$, and give its parameters.
- (d) For a general 2-design, give two necessary restrictions on its parameters (v, k, r).

From these restrictions determine what number of elements v a set may have to support a 2-design with parameters r = 1, k = 3. Do the same for the parameters r = 2, k = 3.

[20 marks]

- **8.** Consider, for $n \in \mathbf{Z}$, n > 1, the polynomial $x^n + 1 \in \mathbf{Z}_2[x]$. Let $g(x), h(x) \in \mathbf{Z}_2[x]$ be factors of $x^n + 1$ with $x^n + 1 = g(x)h(x)$.
- (a) Describe how to build a cyclic code C from g(x), and, by using the coefficients of h(x), describe a check matrix H for C.

What is the code corresponding to g(x) = 1?

What is the code corresponding to $g(x) = x^n + 1$?

(b) Now take n = 20.

Factorise $x^{20} + 1 \in \mathbf{Z}_2[x]$ into irreducibles, and find all generators of cyclic codes of length 20.

(c) Consider a factorisation of $x^{20} + 1 = g(x)h(x)$ with deg h(x) = 14. Write down the number of rows and of columns of the corresponding check matrix. How many errors will this code correct? Give reasons.

[20 marks]