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Solutions for third-year exam

. A ring homomorphism is a function ¢ from a ring R to a ring S such that ¢(1) = 1 and for all r and s

we have ¢(r + s) = ¢(r) + ¢(s) and ¢(rs) = ¢(r) + ¢(s). [lecture] (4 marks)

(a) Not a homomorphism, because ¢(1 +1) =4 # 2 = ¢(1) + ¢(1). [lecture] (4 marks)

(b) This is a homomorphism whose kernel is the principal ideal (2 — 2) and whose image is Z[v/2] =
{a+bV2:a,b€ Z}. [lecture, or very similar to it] (4 marks)

(¢) Not a homomorphism, because ¢(1) # 1. [lecture] (4 marks)

(d) Surjective homomorphism with kernel (5). [lecture] (4 marks)

We must show that 0 € (r, s), that if m, n € (r,s) then m +n € (r,s), and that if m € (r,s) and t € R

then mt € (r, s). The first is true because 0 = Or + 0s. For the second, if m = ar + bs and n = ¢r + ds

then m +n = (a + ¢)r + (b + d)s. For the third, if m = ar + bs then mt = (at)r + (bt)s. [lecture] (8

marks)

Let d be a Euclidean function for R, and choose nonzero ¢ € (r,s) such that d(¢) is minimal. We show

that (t) = (r,s): indeed, any multiple ct of ¢ is equal to acr + bes, showing that (¢) C (r,s). On the

other hand, suppose that ar + bs € (r,s) does not belong to (¢). Then we may write ar + bs = gt + r

where 7 # 0 is such that d(r) < d(t), contradiction. [lecture] (8 marks)

We use the Euclidean algorithm for GCD, finding ged(4 + 74,7 + 9i) = ged(3 + 24,4 + 7i) = 3 + 24

because 4 + 7i = (2 +4)(3 + 2i). [similar to homework] (4 marks)

Clearly ¢(1) = 1. Taking a + by/2 and ¢ + dv/2 to be arbitrary elements of R, we find that

pla+bvV2+c+dV2)=(a+c)+3(b+d) (mod?7)
=a+3b+c+3d (mod7)

= ¢(a+bV2) + ¢(c + dV/2).
Likewise we calculate

#((a + bV2)(c + dV2)) = d(ac + 2bd + (ad + be)V/2)
= ac+ 2bd + 3ad + 3bc  (mod 7)
= ac+ 9bd + 3ad + 3bc (mod 7).
=(a+3b)(c+3d) (mod?7)

= ¢(a + bV2)p(c + dV2)

Clearly ¢(3 —+v/2) =0 (mod 7) =0, so 3 — v/2 is in ker ¢, and therefore every multiple of 3 — /2 is in

the kernel. (10 marks) [similar to lecture and homework]
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(3 =+v2)(3 ++2) = 3% — (/2)? = 7. (2 marks) [similar to lecture and homework]

As suggested, let a + bv/2 € ker ¢, and let us write a + bv/2 = (a + 3b) — b(3 — v/2). Now, 7|(a + 3b)
because a + bv/2 € ker ¢, so by (ii) we get (3 — v/2)|(a + 3b). Plainly (3 — v/2)|b(3 — v/2), so this shows
that (3 — v/2)|(a + bv/2). (8 marks) [similar to lecture and homework]

We have a® = 4 + 2v/3 so that a® — 2a = 2 and so m, = 2? — 22 — 2. Similarly g2 = 1 — 222 5o
B%+B—1/2=0and mg = 2> +z — 1/2. (Any associates of these are acceptable.) [similar to lecture]
(8 marks)

By direct calculation, @ = 26 + 2 and 8 = «/2 — 1. Students may find this using linear algebra: if
a = a + bf, then equating coefficients of 1 and v/3 gives 1 = a — b/2 and 1 = b/2, and similarly for the
other one. [similar to lecture and homework] (4 marks)

Every element of Q(a) is of the form a + ba for a,b € Q (they need not explain why), and similarly for
Q(B). Then, by the above, an element a + ba is equal to a + b(2 + 28) = a + 2b+ 2bg, so it is in Q(fB),
and an element ¢ + df is equal to ¢+ d(a/2 — 1) = ¢ — d/2 + (d/2)a. [similar to lecture and homework]
(8 marks)

We need to find a polynomial g of degree < 2 such that g(x + 1) = 1 in F. To do this, we use the
Euclidean algorithm on z + 1 and z® + 2z + 1. One finds that 2 + 2z + 1 = (22 + 2z)(z + 1) + 1, and
so 1 =23+ 2z + 1+ (222 + z)(z + 1). Therefore 222 + z is the desired inverse. [similar to lecture and
homework] (8 marks)



5ii. The possible orders are the divisors of #F — 1 = 26, that is, 1, 2, 13, 26. [similar to lecture and
homework] (4 marks)

5iii. If 2 were a square in F, its square root would be of order 4, which is not possible. [homework] (2 marks)

5iv. If, say, 222 = a? then 2 = (a/z)?, contradicting the result of (iii) above. [unseen?] (6 marks)

6a. This design exists, because 1-(v, k, r)-designs always exist when k|vr and k < (:ﬂ:}) [similar to lecture
and homework] (5 marks)

6b. This design exists, because of the theorem that a 2-(v, 3, 1) design always exists when v > 1 is congruent
to 1 or 3 mod 6. [lecture] (5 marks)

6¢. This design does not exist. There are 105 pairs of elements in a set of 15 elements, and each 6-element
subset contains 15, so the design would have 7 sets. This is not possible, because 6-7 is not a multiple of

15 (using the theorem that a 2-design is also a 1-design). [theorem presented in lecture, similar examples

in homework] (5 marks)
6d. This is the projective plane over the field Z/5. [lecture] (5 marks)

7i. Each point is given by four coordinates, not all 0. This gives n* — 1 choices, but sets of coordinates
equivalent under scaling give the same point, so we divide by n — 1 (the number of nonzero elements of

F) to get n® +n? +n + 1. [lecture] (8 marks)
7ii. Each plane is defined by a nontrivial linear equation in 4 variables, of which there are n* — 1, and

two equations give the same plane if and only if they are scalings of each other. So we again get

(n*=1)/(n —1) =n® +n? + n + 1. [lecture] (4 marks)
7iii. Let P and @Q be points in P3. The number of linear equations that both satisfy is n2, because the two

conditions are independent by definition of points in projective space. One of these is trivial, and the

remaining n? — 1 give (n? —1)/(n — 1) = n + 1 different planes. Since there are n® + n? + n + 1 points
in P3(F) and n? +n + 1 on each plane, this is a 2-(n® + n2 + n +1,n% + n + 1,n + 1)-design. [lecture]

(8 marks)

8. The weight of a word of a code is the number of nonzero symbols it contains. (2 marks)

(i) It is enough to check that if @ and b have even weight so does a + b. To see this, note that for
a+ b to have a 1 in a given place it is necessary and sufficient that a or b does but not both, so the
weight of a + b is the sum of weights of a and b minus twice the number of positions where a and
b are both 1. In particular the weight of a + b is even provided that the weights of a@ and b are. (6
marks)

Clearly the codewords of even weight in C' are those that satisfy the one additional equation ) a; = 0:
that is, the check matrix is obtained by adding an addition row of 1’s. Thus the dimension decreases by 0
or 1; but it cannot be 0, since that would say that all words of C' have even weight, and we are told that
that is not the case. (6 marks) [lecture] (14 marks total for this part)

(ii) The simplest example is the code C' = {0000,1110,0111,0110}. The set of words whose weight is a

multiple of 3 is not closed under addition, because it contains 1110 and 0111 but not 0110. [unseen]
(6 marks)



