1. By evaluating f(0), f(1) and f(2) we see that f(x) has no roots in Z/3Z
and thus is irreducible.

(i) The size of F is 3* = 27 and the size of F* is 26. The possible orders are
the divisors of |F*| = 26, that is, 1, 2, 13 and 26.

(ii) If 2 were a square in F, its square root would be of order 4, which is not
possible.

(iii) If 222 = a® then 2 = (a/z)?, contradicting the result of (ii) above.

(iv) The elements of order 13 which are not 1 are precisely the squares in F
because the order of a square is a divisor of 13 and so is either 1 or 13. In
this case we have (z +2)? = 22+ z + 1.



2. The easiest way to show N is multiplicative is to note that N(r) = |r|? =
r7 so that
N(rs) = rsrs = r7ss = N(r)N(s).

It is also acceptable to compute explicitly in terms of the real and imaginary
parts.

The units in Z[i] are those elements u with N(u) =1 i.e. £1, 4.

If N(r) is a prime in N and r = st then N(r) = N(s)N(t) so either N(s) or
N(t) must be 1 and hence either s or t is a unit. Hence r is irreducible.

(i) N(3) = 9 so if there is a factorisation 3 = rs into two irreducibles then
N(r) = N(s) = 3. However a® + b* = 3 has no integer solutions so 3 is
irreducible.

(ii) N(5) = 25 so if there is a factorisation 5 = rs into two irreducibles then
N(r) = N(s) = 5. The possibilities are 2 + i (up to associates). Trial
dividing we find that 5 = (2 4+ ¢)(2 — ). (Any other factorisation which is
the same up to associates is acceptable.)

(iii) N(1+4i) =17 so 1+ 44 is irreducible.

(iv) N(3 + 5i) = 34 so possible irreducible factors have norms 17 or 2. Trial
dividing we find
34 5i=(1—4i)(—1+1)

(or similar up to associates).

(v) N(7 —1i) = 50 so possible irreducible factors have norms 2,5, or 25. The
elements of norm 2 are 1 + 4, those of norm 5 are 2 &4 (up to associates).
Trial dividing we obtain

7T—i=(1+14)(2—1i)

From the above 3 is irreducible but N(3) = 9 is not prime in Z. (Any other
prime of the form 4k + 3 is also acceptable, provided they show it is irreducible!)



3.

a) Clearly /2 is a root of 22 — 2 which is irreducible in Z[z] because 2 is
not a perfect square. Hence, by Gauss’s lemma, 2% — 2 is irreducible in Q[z] and
so is the minimal polynomial of /2.

Let o« = V2 + /7. Then o? =9 + 2¢/14 so

(a®* —9) =56 or, equivalently, o*—18a* + 25 = 0.

Let f(z) = 2* — 1822 + 25. We show this is irreducible in Z[z] and thence by
Gauss’s lemma in Q[z]. The only possible linear factors in Z[x] are # £ 1 and
x £ 5 but we easily see that none of &1, &5 are roots. Since the coefficient of 23
vanishes the possible factorisations into quadratics are

(2* +ax £5)(2* —axr £5) or (2 +ax£1)(2® — ax £ 25).
Comparing coefficients of 2% we have
—18=—a*+£10 or —18=—a*>+26

none of which have solutions in Z because none of 8,28, —8 and 44 are perfect
squares. hence f(x) is irreducible and so is the minimal polynomial.

b)  We have a(a® — 9) = (v2 + V7)2V14 = 4/7 + 14y/2. Hence
a(a? —9) — 4o = 10V2

or, equivalently,

V2 = 110 (a(a2 -9) — 4a> € Qlal.

(i) Since the minimal polynomial of v/2 has degree 2 we have [Q[v/2] : Q] = 2.

(ii) Since the minimal polynomial of o = v/2++/7 has degree 4 we have [Q[a] :
Q] =4

(iii) By the above [Q[a] : Q[v2]] = [Qle] : QI/[Q[V2] : Q] = 2.

If /7 € Q[v2] then o € Q[v/2] and [Q[a] : Q[v/2]] = 1. Since this is not the
case V7 € Q[v2].



4. If degg(r) < deg f(z) then g(x) has no common factors with the irre-
ducible polynomial f(x). Hence ged(f(z),g(z)) = 1. We can find the ged
by using the Euclidean algorithm and then (Bézout’s theorem) we can find
a(z),b(x) € Q[x] with

a(x) f(x) + b(x)g(x) = 1.

Reducing modulo (f(z)) the above equation becomes
b(x)g(x) =1
in Q[z]/(f(x)) so that the class of b(x) is a multiplicative inverse for that of
9(x).
To find the multiplicative inverses we carry out the Euclidean algorithm:
(1)

Prr+l=@*-r+2)(r+1)-1

Thus

ged(f(2),9(x)) = -1

= f(@) = (@* — 2 +2)g(z).
So a(x) = —1 and the required multiplicative inverse is
b(z) =2* — 2+ 2.
(i)
2?4 +2 = (z+4)(2*+ 1)+ (-2 —2)
2?+1 = (2 +2)(-r—2)+5

So

ged(f(2),g(x)) = 5
= g(x) + (z = 2) (f(z) — (x +4)g(z))
= (z—=2)f(2) - (2" + 2z — 9)g(x)

So a(z) = £(x — 2) and the required multiplicative inverse is

bz) ;(—IQ + 22— 9).



5.

(1)

(iii)

There are 52 = 25 points in (Z/5Z)? and 5 points on any line.

There are 25 x 24/2 = 300 distinct pairs of points in (Z/5Z)? and 5 x 4/2 =
10 pairs of points on each line. Since there is a unique line through any
pair of distinct points the number of lines in (Z/5Z)? is 300/10 = 30.

The number of lines through a point z is given by the number of other
points divided by the number of other points on any line through z i.e.
there are 24/4 = 6 lines through a given point.

Both sets of parameters can be obtained by taking as blocks the subsets
of (Z/5Z)? given by points on each line (there are 5 points on each line
so each block has size 5 as required). Each point lies on 6 lines and each
pair of points lies on 1 line. This gives the required 1-design and 2-design,
respectively.

The first set of parameters can be obtained by taking as blocks the subsets
of lines through each point (there are 6 lines through each point so each
block has size 6). Each line passes through 5 points giving a 1-(30, 6, 5)-
design.

The second set of parameters can be obtained by taking as blocks the
subsets of parallel lines. There are 5 lines in each block and each line lies
in exactly one block giving a 1-(30, 5, 1)-design.



6. a) Label the seven varieties by the points in the projective plane P%(Z/2Z)
and the seven locations by the lines in P?(Z/2Z). The three varieties grown in
a location are those corresponding to the three points on the line corresponding
to the location.

Since any two points lie on a line, any two varieties are planted together in
one location.

The incidence matrix of the schedule is therefore the same as that of points
and lines in P?(Z/27Z):

[1:0:0] [0:1:0] [0:0:1] [1:1:0] [1:0:1] [0:1:1] [1:1:1]
x=0 0 1 1 0 0 1 0
y=20 1 0 1 0 1 0 0
z=0 1 1 0 1 0 0 0
r+y=20 0 0 1 1 0 0 1
r+2z2=0 0 1 0 0 1 0 1
y+z=0 1 0 0 0 0 1 1
rhy+z=0] 0 0 0 | 1 1 0

b) A 2-(v,k,r)-design consists of an underlying set X and a set B of
subsets of X (the blocks of the design) each of which has size k and with the
property that each pair of elements of X occurs in precisely r of the blocks of the
design.

The numerical constraints for a 2-design are

(k—=1)| (v=1r and k(k—1)|v(v—1)r

When k£ = 3 and r = 1 these yield
2| (v—1) and 6 |v(v—1).

Hence v = 20+ 1 where (204 1)2¢ = 6m. So { = 3n or £ = 3n+ 1. The first case
yields v = 6n + 1 and the second v = 6n + 3.



7. a) The irreducible degree 2 polynomial in (Z/2Z)[z] is 2* + x + 1 (it is
easy to check it has no roots). The three irreducible degree 4 polynomials in
(Z/2Z)[z] are

4+t +r+1, 2*+r+1 and 2+ 25+ 1

Again, it is easy to check they have no roots. Since there is only one irreducible
degree 2 polynomial and none of these is its square (which is x* + 2% + 1) they
must be irreducible.

The theory of factorisations of 2" — x in (Z/pZ)[x] tells us that the factors
of x'® + x in (Z/2Z)[x] are the irreducible polynomials in (Z/2Z)[x] of degrees
dividing 16, and that each occurs once in the factorisation. Hence

P +l=(r+ )@ +z+ )" +2° + 22+ 2+ D)@ + 2+ 1) (@ +2° + 1),

b) If g(z) = (z + 1)(2? + x + 1) then g(z)h(x) = z'5 + 1 where

h(z) = @ +z+D(@*+23+22 +24+ 1)@ +2°4+1)
= 042 28 af 2% 2?41

The first row of the check matrix is the coefficients of h(z) in descending order
starting with that of the highest power x'° and followed by 4 zeros (to make 15
entries). The next row is the cyclic shift of this right by one place and so on. So
the matrix is

11101100101O0000
01 1101100101O0U00O0
0011101 100101O00O0
000111011001O010
000011101100T1F0°1

There are no zero columns and no two columns are the same so the code has
weight > 3.

c)  Each cyclic code of length 15 is generated by a factor of 25 4+ 1. The
dimension of the code is 15 less the degree of the factor. Simple combinatorics
yields: there is one cyclic code of each dimension in {0,1,2,3,12,13,14, 15} and
three of each dimension in {4,5,6,7,8,9,10,11}.



8. a)  The minimum distance of a code C' in (Z/2Z)" is
min{d(z,z') : x £ 2’ € C}
where = = (1, x9,...,x,), ' = (2],2,,...,2)) and the distance

d(z,x") = |{i: z; # 2}

The weight of a word x = (x1, za, ..., x,) is w(z) = |{z; # 0}|, and the weight
of the code C is

min{w(x) : z € C'}.

It follows that d(z,z') = w(z — 2’) = w(x + 2’) and so the minimum distance
and the weight are the same.

(1)

(i)

(iii)

(iv)

b)

Suppose x is a word of weight 1 and that z; is the non-zero entry. Then
Maz" is the ith column of M. If this column is not identically zero then

x & C.

Suppose x is a word of weight 2 and that x; and z; are the non-zero en-
tries. Then Mz7 is the sum, equivalently the difference, of the ith and jth
columns of M. If these columns are not the same then = & C.

Suppose z is a word of weight 3 and that z;,z; and x;, are the non-zero
entries. Then Mz” is the sum of the ith, jth and kth columns of M. If the
sum of these columns is not zero then x ¢ C.

Clearly M has no identically zero columns and no two columns are the
same. Each column has either 1 or 3 non-zero entries. The sum of any two
of the first, or last, four columns has two non-zero entries. Hence adding
any other column gives a non-zero result. Thus C' has weight > 4.

An example of a word in the code with weight 4 is 11101000. Thus C has
weight exactly 4.

The code C' detects 4 — 1 = 3 errors and corrects [ (4 —1)/2] = 1 error.



