THE UNIVERSITY of LIVERPOOL

- 1. Define ring homomorphism. For each of the following ϕ determine, with justification, whether or not it is a ring homomorphism from R to S.
 - (a) $R = \mathbf{Q}[x], S = \mathbf{C}, \phi(f) = f(i).$
 - (b) $R = \mathbf{Z}[i], S = \mathbf{Z}/3, \phi(a+bi) = a+b \pmod{3}.$
 - (c) $R = \mathbf{Z}/3$, $S = \mathbf{Z}/15$, $\phi(0) = 0$, $\phi(1) = 10$, $\phi(2) = 5$.
 - (d) $R = \mathbb{Z}/9, S = \mathbb{Z}/3, \phi(i) = i \pmod{3}$.

[20 marks]

- **2.** (i) Let a and b be nonzero elements of a Euclidean domain R with the degree function d, and let g be the element of R whose degree is least among all nonzero elements of R of the form ra + sb, where $r, s \in R$. Show that (a) g divides a (it follows that g divides b, by symmetry); (b) if b is an element of b0 that divides b3 and b4 then b6 divides b6.
- (ii) Now let $R = \mathbf{Z}[i]$ with the degree function $d(m+ni) = m^2 + n^2$ (you may assume that R is a Euclidean domain for this degree function). Also let a = 6 + 2i and b = -3 + 5i. Find, with justification, an element g with the properties described in (ii) above, and give elements r, s such that g = ar + bs.

[20 marks]

- **3.** Define *irreducible* and *prime*. For each of the following elements of the given rings, write the element as a product of irreducibles in the ring.
 - (a) -7 + 11i in $\mathbf{Z}[i]$;
 - (b) $x^5 + x^2 + 1$ in $\mathbb{Z}/2[x]$;
 - (c) $3x^5 + 8x^3 + 7x^2 5$ in $\mathbf{Q}[x]$;
 - (d) $3x^3 + 18x^2 3x + 12$ in $\mathbf{Z}[x]$.

(Hint for (a): every irreducible of $\mathbf{Z}[i]$ whose norm is less than 10 is an associate of one of these: 1+i, 1+2i, 2+i, 3. Hint for (c) and (d): you may wish to reduce the polynomials modulo certain primes.)

[20 marks]

THE UNIVERSITY of LIVERPOOL

- **4.** In this problem let $R = \mathbf{Z}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbf{Z}\}$, and let $S = \mathbf{Z}/11$.
- (i) Prove that the function $\phi: R \mapsto S$ defined by $\phi(a+b\sqrt{3}) = a+5b \pmod{11}$ is a homomorphism, and check that the kernel of ϕ contains the ideal $(1+2\sqrt{3})$.
 - (ii) Show that $(1 + 2\sqrt{3})|11$ in R.
- (iii) By writing $a + b\sqrt{3} = a(1 + 2\sqrt{3}) (2a + 10b 11b)\sqrt{3}$, or otherwise, show that every element of ker ϕ is a multiple of $1 + 2\sqrt{3}$.

[20 marks]

- **5.** (i) State a property of an element f of $\mathbb{Z}/5[x]$ that guarantees that $\mathbb{Z}/5[x]/(f)$ is a field, and such that $f = x^2 + 3$ has this property. Show that $f = x^2 + 3$ has the property.
- (ii) Now let R be the ring $\mathbb{Z}/5[x]/(x^2+3)$. Find the multiplicative orders of x and 3x+2 in R. State whether x is a square, and whether 3x+2 is a square.
- (iii) Calculate x(3x + 2) in R, and determine its order. (Hint: use your results from (ii) to find the order.)

[20 marks]

- **6.** In this problem let $f = x^3 3x^2 + x + 3$.
- (i) Find a prime p so that the reduction of f mod p is reducible, and give the factorization of the reduction.
- (ii) Show, using reduction modulo an appropriate prime, that f is irreducible in $\mathbf{Q}[x]$.
- (iii) Now let $R = \mathbf{Q}[x]/(f)$. Find the multiplicative inverse of (the class of) $x^2 x 2$ in R, or show that it has none.
- (iv) Now let $\alpha \in \mathbf{C}$ be a root of f (you may assume that such α exists). Using your results from above, or otherwise, express $1/(\alpha^2 \alpha 2)$ in the form $a + b\alpha + c\alpha^2$, where a, b, c are rational numbers.

[20 marks]

THE UNIVERSITY of LIVERPOOL

- 7. (i) Say what it means to develop a subset of \mathbb{Z}/n .
- (ii) Show that developing the subset $\{0, 1, 4, 6\}$ of $\mathbb{Z}/13$ produces a 2-(13, 4, 1)-design.
- (iii) Show that it is not possible to obtain a 2-design by developing a 3-element subset of $\mathbb{Z}/13$.
- (iv) Show that, on the other hand, the 26 sets obtained by developing the two subsets $\{0, 1, 4\}$ and $\{0, 2, 7\}$ constitute a 2-(13, 3, 1)-design.

[20 marks]

- **8.** (i) Factor $x^7 + 1$ into irreducibles over $\mathbb{Z}/2[x]$.
- (ii) Give a generator for a cyclic code of length 7 and dimension 3 over $\mathbb{Z}/2$, and write a check matrix for it.
 - (iii) Prove that this code has minimum weight 4.
 - (iv) State the number of errors corrected by this code.

[20 marks]