M744 2005 Solutions.

1. (a) To say that {vy,vs,...,v,} spans V means that every element in V
can be written as a linear combination

Av1 + Aovg + - - -+ A\pup.

[1 mark]

Now, to show that W is a subspace of V, first note that the zero vector

(0,0,0) is in W because the sum of its coordinates is 0+0+0=0. If now

(x1,y1,21) and (z2, Y2, 22) are in W, then by definition z; + y; + 21 = 0 and
also 9 + y2 + 29 = 0. So since

(w1, Y1, 21) + (22, Y2, 22) = (21 + T2, y1 + Y2, 21 + 22),
we add the three coordinates of this vector to obtain
(1 +xo)+, (Y1 +y2) +(z1+22) = (@1 +y1+21) + (X2 +y2+22) =04+0=0

Finally, if (x,y, z) is in W (so that = +y + z + 0) and A is any real number,
then \(z,y,z) = (\x, Ay, A\z). Since

AL+ Ay, +Adz=ANz+y+2)=A1-0=0

We have therefore shown that W is a subspace of V. [3 marks]
When we take the vectors (1,0,—1),(1,2,1) and (2, —2,—4), it is clear
that the first two are independent, so we investigate what happens if we write

(2, -2, —4) = (1,0, —1) + p(1,2,1).

This leads to three equations: 2 = A+ p, —2 = 2y and —4 = — A+ pu. We see

that 4 = —1 and so A = 3. Since these equations have non-zero solutions,

the third vector depends on the first two so U has basis (1,0, —1) and (1,2, 1)

and dimension 2. [2 marks]
Now

W = {(z,y,2):x+y+2z=0}
= {(&,9,2): 2= -y — =}
= {(z,y,—y—2)}
= {x(1,0,-1) +y(0,1,-1)}
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Since (1,0, —1) and (0,1, 1) are clearly linearly independent, they are a basis
for W so W also has dimension 2. [2 marks]

Now if (z,y,2) isin UN W, then z = —y — z and so (z,y,—y — ) is a
linear combination of (1,0, —1) and ((1,2,1):

(z,y,—y —z) = A(1,0,—1) + p(1,2,1)

this gives x = A+ p, y = 2p and —y — 2 = —A + p. Thus p = y/2 and
A =2z —y/2 (from the first two equations). The third then gives

—y—r=-A+pu=—-c+y/24+y/2=—-c+y

it follows that y = 0, so vectors of the form (z,0, —x) are in U NV showing
that this space has dimension 1. Since UNV # {0}, it follows that R? is not
the direct sum of U and V. [2 marks]

(b) Since L(1) =2 =0-14+1-2+0-22+0-23, the entries in the first column
of M are 0, 1, 0, 0. Similarly, we have L(z) = 1, L(z?) = z* and L(z?) = z°.
It follows that the matrix M is

0100
1000
M_O(]Ol
0 010

[2 marks]
We next compute det(AI — M) to get

det(\ — M) =
A -1 0 0
1 A 0 0
= det] o o A 1
0 0 —1 A

A0 0 -1 0 0
= Adet | 0 A =1 |—(=I)det | 0 A —1
0 -1 A 0 -1 A

= AAN =1)) = (=1)(=(X* = 1))
M -1\ -1)
A2 —1)?
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It follows that M has two repeated eigenvalues, namely 1 (twice) and —1
(twice). [4 marks]

When A = 1, a vector v = a+ bz +ca® + dz?® is an eigenvector if L(v) = v,
s0 b+ azx + dx? + cx® = a + bx + cx? + dz®. This occurs precisely if b = a and
d = ¢, so the eigenvectors are the polynomials of the form a + az + ca? + cz?.

[2 marks]

When A\ = —1, a vector v = a + bx + cx? + dr® is an eigenvector if
L(v) = —v, s0 b+ax+dz*+cx® = —a—br — cx? —dz®. This occurs precisely
if b = —a and d = —c, so the eigenvectors are the polynomials of the form
a—ar + cx? — cz’. [2 marks]

2. The kernel of f is the set of vectors v such that f(v) = 0. The image of
f is the range of values taken by f.The rank of f is the dimension of im f
and the nullity of f is the dimension of its kernel. [4 marks]

Now to show that ker f is a subspace, we check the standard three re-
quirements:

First 0 is in ker f because f(0) = 0;

Next if u,v are in ker f then f(u) = 0 = f(v). Then since f is a linear
map, f(u+v) = f(u)+ f(v) =04+ 0=0, so u,v is in ker f;

Finally, if w is in ker f (so f(v) = 0) and A is any real number f(\v) =
Af(v) =A-0=0, since f is linear.

We have therefore shown that ker f is a subspace of V.

[3 marks]
The matrix of the given linear map is

O N ==
S O = =
[ R
O N = =

To find a basis for the image of f, we need to find a basis for the space
spanned by the columns of A: the vectors

(]'7 ]"270); (17 ]"070); (]"27 ]‘70); and (1?17270)

Clearly the last equals the first, so the only question is whether the third is
a linear combination of the first 2. Consider

(1,2,1,0) = A(1,1,2,0) + (1,1,0,0)



This gives 1 = A+ pu, 1 =2, 2 = A+ p and 0 = 0. Clearly the first and

third are inconsistent, so they have no solution, so the third vector is not a

linear combination of the first two. We deduce that (1,1,2,0), (1,1,0,0) and

(1,2,1,0) are a basis for the image and so the rank of f is 3. [5 marks]
The kernel is the solution set for the equations Au = 0, giving

r+y+z2z+1t=0; z4+y+224+t=0; 2x+4+24+2t=0.

It is clear that if we subtract the first two equations, we obtain z = 0. Re-
writing then gives x+y+t = 0 (twice) and 2z+2t = 0. Thust = —zandy =0
so the solution set consists of vectors of the form (x,0,0, —z) = z(1,0,0, —1).
This is clearly a one dimensional space spanned by the vector (1,0,0,1) so
the nullity is 1.
[5 marks]|
To decide whether R* is a direct sum of the kernel and the image of f or
not, we try to find a u with f(u) = 0 and v = f(v). Thus u is of the form
z(1,0,0,—1) and also u is in the image of f so

uw=X\1,1,2,0) + u(1,1,0,0) 4+ v(1,2,1,0)

Since all vectors in the image of f have zero fourth coordinate,the only vector
common to ker f and im f is that with £ = 0 so the intersection of ker f
and im f is {0}. Thus the sum of ker f and im f has dimension 4 and so
must equal R*. It follows that R* is the direct sum of ker f and im f.

[3 marks]

3. The dual space is defined to be the set of all linear maps from V' to R.
Given 6, ¢ in V*, we can define 6 + ¢ by (0 + ¢)(z) = 0(x) + ¢(x). Similarly,
for A in R, we define (\0)(z) = A(6(z)).

Given a basis {1, s,...,2,} for V, we define ¢; as the unique linear
map which maps z; to 1, but all other basis elements to 0. To prove this
gives a dual basis, suppose first that f is any linear map from V' to R. Let
A, be that scalar which f maps x; to (so that A\; = f(z;)). Then for any j
the map A1 ¢y +-- - A\, ¢, takes z; to A; (since ¢;(x;) = 0 for i # j). Thus the
maps f and A1 + -+ A\, ¢, agree in their action on a basis for V' so must be
equal and the vectors ¢4, ... ¢, span V*. Now to check linear independence,
suppose that A\j¢;+- -+ A\,¢, = 0. Then, for any z;, (A\1p1++ - Anéy)(z;) =0
we also know that (A1¢1 +--- A\nhn)(z;) = A;j, so each A; would then be zero.
Thus {¢1,..., P} is a basis for V*. [7 marks]



Thus we have that

dr(v1) =1;  di(v2) =0 i(v3) =0
$1(v2) =0;  da(va) =1 ¢a(v3) =0
¢1(vs) = 0; $3(ve) =0 o3(vs) = 1.

[1 mark]

Now if ¢1(x,y, z) = a12+ b1y + 12, we obtain a; + by +¢1 = 1, ag +2b; +

4cy = 0 and a; — by + ¢ = 0. We now solve these equations for a1, by, c; to

get 2a;+2¢; =1 (so ¢; = 1/2—a;y). We can now re-write the first two to say

by +1/2=1 (so by =1/2) and a1 +4¢; = =1 (so a; = +1 and ¢; = —1/2),

so that ¢1(z,y,x) = z + y/2 — z/2. Similar calculations are carried out to
determine ¢,: we solve

a2+b2+02=0, a2+2b2+402:1, andaz—b2+62:0

These give as = —1/3,b, = 0 and ¢, = 1/3 so that ¢o(z,y,x) = —x/3 + 2/3.
For ¢3, we solve

a3—|—b3+03=0, a3+2b3+403:(), andag—b3+03:1.

This time the solution is a3 = 1/3,b5 = —1/2 and ¢3 = 1/6 so that ¢3 is
given by ¢s(z,y,2) = x/3 —y/2 + 2 /6. [5 marks]

Finally

$:1(3,2,1) = 3+2/2-1/2=71/2;
$2(3,2,1) = —3/3+1/3=-2/3;
$3(3,2,1) = 3/3-2/2+1/6 =1/6.

[2 marks]

Finally, to express the mapf(z,y, 2) = x + 2y + 3z in terms of ¢, ¢ and
¢3, we use the proof given in the answer to the first part of the question.
Thus, we let \; be the scalar which f maps v; = (1,1,1) to, namely 6,
similarly we take Ay to be f(1,2,4) = 17 and A3 to be f(1,—1,1) = 2. Thus
the required combination is

661 +17¢ds + 263
= 6(z+y/2—2/2)+17(—x/3+2/3) +2(x/3 —y/2+ 2/6)
= z+2y+3z2



as required. [5 marks]

4. We are given that f((z1,2), (Y1, ¥2)) = T1%1 + 221y2 + 2y2. Thus

£((2,2),(2,2) = 2-2+2-2-242-2=16
f((2,2),(0,1)) = 2:0+2-2-14+2-1=6
£((0,1),(2,2) = 0:24+2:0-2+1-2=2
£((0,1),(0,1)) = 0-0+2-0-1+1-1=1
. .. 16 6
so the required matrix is A = 5 1 [3 marks]
Similarly for the basis (1,1), (0, 1)
F(L,1),(1,1) = 1-1+2-1-1+1-1=4
f((1,1),(0,1)) = 1-04+2-1-14+1-1=
F((0,1),(1,1)) = 0-14+2-0-1+1-1=
£((0,1),(0,1) = 0-0+2:0-1+1-1=1
. . . - 4 3
so, in this case, the required matrix is B = 11 ] [3 marks]
(120
AlsoP-( 0 1)50,
v (1/20\(16 6\[1/2 0
PrAP = ( 01 2 1 01
(12 0\(8 6
B 01 11
(43
o 11
= B
as required. [4 marks]

A bilnear form is symmetric if f(u,v) = f(v,u). Thus if v1,...v; is a
basis for V' and f is symmetric, f(v;,v;) = f(vj;,v;) for all 4, j, so the matrix
of f is symmetric.

[2 marks]



The matrix A is orthogonal if AAT = I. If P, are orthogonal matrices
PPT =1 and QQT = 1. Then

PQ(PQ)" = PQQTPT =PIP" =1

so PQ is orthogonal.
[2 marks]
If now A is the matrix of f with respect to {vi,vs,...v,} and P is the
change of basis matrix to basis {u,us,...u,}, then the matrix of f with
respect to {uy, us, ... u,} is PTAP which has determinant det P det A det
P. These three determinants are real numbers so det PT det A = det A det
PT so the required determinant is equal to det A det PT det P = det A
since P is orthogonal.
[4 marks]
If now A is a symmetric 2 X 2 which is orthogonal then

a b a b
(b d) (b d) = b
soa?+b2=1="b>+d? and b(a +d) = 0. If a = —d, then det(4) = —1, so
we may suppose that b = 0 and a? = b?> = 1. Thus the required matrices are

I, and —is. [2 marks]

5. The given form is q(z,y, 2) = 22 + 622 — 2y* + 2?2 so its matrix is

[1 mark]
The eigenvalues of A are the zeros of the polynomial

A—1 -0 -3
= det 0 A+2 0

-3 0 A—-1
_ A+2 0 0 A+2
= (A—l)det( 0 )\_1>—3det<_3 O)

= A=1DA+2)(A—=1) =331 +2))
= A+2)A-1)>-91—18
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= (A+2)(A—=1)>-9)
(A+2) (A2 =21 =18)
A+2)(A—=4)(A+2).

It follows that the eigenvalues are —2 (twice) and 4. [3 marks|
The eigenvectors for eigenvalue —2 are given by

1 03 x —2x

0 -2 0 y | = —2y

3 01 z -2z
so we obtain the equations x + 3z = —2x (or 3z + 32 =0), —2y = —2y (so y
is unconstrained) and 3z 4+ z = —2z (also giving  + z = 0). Thus a typical
eigenvector is (z,y, —z). [3 marks]

The eigenvectors for eigenvalue 4 are given by

1 0 3 T 4z
0 -2 0 y | = 4y
3 01 z 4z

This time the equations are z+3z = 4z (or z = z), —2y = 4y ( giving y = 0)
and 3z + z = 4z (so x = z). A typical eigenvector is of the form (z,0,z). [3
marks]

The required orthogonal matrix P is obtained by putting orthgonormal
eigenvectors into columns so

1 1
2 0 2 -2 00
P = 01 0] and D= 0 -2 0
- 1
% 0 5 0 0 4
[3 marks]
The surface 4X? — 2Y? — 272 = 25 is a hyperboloid of two sheets with
circular cross-section, the surface 4X?2 — 2Y2 — 272 = —25 is a hyperboloid

of one sheet while the surface 4X? — 2Y? — 272 = 0 is an elliptic cone.
[6 marks including sketches]
The surface 4X? — 2Y? — 272 = 25 has points arbitarily far from the
origin (for example if Z = 0 we would have 4X? = 25 + 2Y2, where we can
obviously find a solution with X as large as we like). Thus this surface is not
bounded inside a fixed sphere.



[2 marks]

6. An isometry on R? is a map f such that f is a bijection and f preserves
distances between points so that for all u,v € R? we have ||[u—v|| = ||f(u) —
f(@)||. An example of an isometry which is not a linear map would be (e.g)
translation one unit along the direction of the z-axis. Since this does not fix
(0,0) it is clearly not a linear map.
[3 marks]
To say that an isometry f is a reflection in a line £ means that we obtain
the cooordinates of f(z,y) by dropping a perpendicular from (z, y) to a point
p on ¢ and extending this perpendicular ‘beyond‘ /¢ for a distance equal to
that from (z,y) to p. It is clear from construction that applying f to f(z,y)
returns us to (z,y), so f? is the identity map.
[3 marks]
The map ¢ will take the vector (1,0) to that obtained by rotating anti-
clockwise through 90° so (1,0) maps to (0,1) and (0, 1) itself maps to (—1,0).
Thus the matrix of ¢ is M = ( (1) _(1)
Now consider reflection in the line y = —z, the vector (1,0) is sent to
(0,—1) and (0,1) is sent to (—1,0), so the matrix A of this reflection is
( _(1) _é ) [3 marks]
Next consider the matrix B of reflection in the line y = mx where m =tan
30°. As always we consider the action of the map on the two unit vectors.
A simple diagram, using congruent triangles shows that (1,0) is mapped to
the point on the unit cicle making an angle (anti-clockwise) of 60° with the
z-axis. This point has coordinates (cos 60°, sin (60°)=(1/2,+/3/2). This
gives the first column of B. Next consider the map acting on (0,1). We
first join the unit vector by a perpendicular to our line (using an angle of
60°). When extending beyond the line, we arrive at a point on the unit circle
making an angle of 30° below the z-axis, and so having coordinates (cos 30°,
-sin (30°)=(1/3/2, —1/2) thus the matrix B is < \/:1£ \_/i)g )
[5 marks]

[2 marks]

The matrix C of the composite map is then

o= (73] (8- (0 )



[2 marks]
The square of C' is then

( —/3/2 1/2 ) ( —\/3/2 1/2 ) B ( 1/2 —/3/2 )

~1/2 —/3/2 —1/2 —3/2 ) =\ /3/2 1/2
Since this is not the identity matrix, C' cannot represent a reflection.
[2 marks]

7. A group is a set G with a law of composition satisfying the following
axioms:

G1) for any z,y € G, zy is in G}

(
(G2) for any z,y, z in G, z(yz) = (zy)z;

(G3) there is an element e in G such that for all g € G, ge = g = eg;
(G4)

G4) given an element g € G, there is an element g ! of G with gg ! =1 =
—1
g9 9.

Given two groups (G,o) and (H,*), a map f is a homomorphism if

flgoh) = f(g)* f(h)

for all elements g, h of G

The kernel of f is the set of elements g in G such that f(g) = ey.

The image of f is the set of those elements in h which are images of
elements of G under f. [7 marks]

To show that f(eg) = ey, note that for all z € G f(z) = f(egr) =
f(eg)f(z), so by uniqueness of solutions of equations, f(eg) = eg. To show
that ker f is a subgroup, note that we have already seen that f(eg) = ey.
Also if z,y are in ker f, then f(z) = e = f(y), so f(zy) = f(x)f(y) = e
Finally if ¢ € ker f so that f(g) = e, Then ey = f(eq) = f(997!) =
f(9)f(g7") = f(g7"), s0 g~" is in ker f.

[4 marks]

(a) To check if ¢ is a homomorphism consider two matrices A, B in G,

then ¢(AB) is equal to

a; by as by _ a1a9 boay + asby _
qs((o bl) (0 ba >>_¢<<0 by by >>—62a1+a2b1.
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Since this is not equal to biby in general, ¢ is not a homomorphism
[2 marks]
(b) Next let A, B be in G and consider

aam((35)(3 )=+ ((4 7)) oo

Since the operation in H is addition, this map is also a homomorphism. The
kernel is the identity matrix and the image is all of R.

[4 marks]

(c) This map is also a homomorphism since det A det B=det AB. The

kernel of this map is the set of matrices of determinant 1 and the image is

again all of H. [3 marks]

8. (i) To show e is unique, suppose that G had two identities e; and ey then
e1 = g = ge; and esg = g = gey for all g in G. Now consider the element
e1es. Since e; is a left identity, this is e;, and since ey is a right identity this
is e SO €] = es. [2 marks]
If now an element g of G had two inverses x and y say, we would have
gx = e =xg and gy = e = yg. Then y = (zg)y = z(g9y) = re = z using
(G2) and the given information. [2 marks|
(i) Suppose that a*b = g = a*c for some elements a, b, ¢ in G. Multiply
the equation a*b = a*c on both sides by the inverse of a to get a™! x (a*b) =
a™! * (a * ¢). Now use associativity to get (a™! *a) *b= (a™! * a) * c. Since
a ! is the inverse for a, a ! x a = e, so we obtain eo b = e o ¢. The result
now follows since e is an identity element. [2 marks]
Now if an element g is repeated in the same row of a table, then g will be
of the form a o b and also of the form « o ¢ for some a, b, and ¢, so the above

argument shows that b = c. [1 mark]
For columns, if a o b = c o b, we multiply on right by b~! and again use
associativity, inverse and identity to deduce that a = c. [2 marks|

(iii) Inspecting the given partial table, we see that fa = a which can only
happen in a group when f is the idenity element. This also means that b is
the inverse of ¢ (and so c is the inverse of b). Similarly, since d is the inverse
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of a, a is the inverse of d. We can now fill in more of the partial table:

ola b ¢ d f
alb ¢ 7 f a
b f a b
c f c
d|f d
fla b ¢ d f

The entry marked 7 cannot be a,b,c or f (already in row) so must be d.
Next consider the second entry in the column headed by b. This cannot be
¢, f or b (all in this column) or a,b, or f (already in row). This entry must
also equal d. This gives

ola b ¢ d f
alb c d [ a
b d f a b
c f c
d|f d
fla b ¢ d f

The remaining entry in the second row must now be ¢, that in the first column
third row must then be d and the missing entry in the second column must
be a. We now have

ola b ¢ d f
alb c d f a
blc d f a b
cld f ?7 ¢
d|f a d
fla b ¢ d f

The entry at ? cannot be a, f or d (already in column) nor d, f, or ¢ (already
in row), so must be b the missing entry is that row is then a, that from the
same column is ¢ and the final entry b to complete the table as

ola b ¢ d f
alb ¢ d f a
blc d f a b
cld f a b c
d|f a b c d
fla b ¢ d f
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[8 marks]

(iv) We are given that b = aca. Now acaoa is not a (otherwise cancelling

a by (ii) would give b = e) nor e (otherwise e o a = e contrary to definition)
so aoaoa = c. We then obtain the table using (i) and (ii))

o o ™
O N |
DO o |
QD o oo
2 ® olo

[3 marks]
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