MATH 744 Solutions.

1(a). To say that {vi,ve,...,v,} spans V means that every element in
V can be written as a linear combination

A1v1 + Agve + -+ - 4 Aoy,

[1 mark]

When we take the vectors (1,0,—1),(1,—2,1) and (2,2, —4), it is clear

that the first two are independent, so we investigate what happens if we
write

(27 2a _4) = /\(11 Oa _1) + u(la _25 1)
This leads to three equations: 2 = A+ pu, 2 = -2y and —4 = —A + u.

We see that 4 = —1 and so A\ = 3. Since these equations have non-zero
solutions, the third vector depends on the first two so U has basis (1,0, —1)
and (1,—2,1) and dimension 2. [2 marks]

To show that W is a subspace, note that the zero vector (0,0,0) is in
W because 0+ 0+ 0 = 0. If (z1,y1,21) and (z2,y2,22) are in W, so that
1+ y1+ 2z =0 and zo + yo + 29 = 0, then

(T1,91,21) + (22,92, 22) = (T1 + T2, y1 + Y2, 21 + 22)
and since
T1+xotyitytzantze=(@+y1+z)+(@2+y2+23)=0+0=0,

it follows that (z1 4+ z2,y1 +y2, 21 +22) is in W. Finally, let (z,y,z) be in W
and A be any real number. Then z+y+ 2z = 0 and A(z,y, 2) = (A\z, Ay, \z).
Since

A+ Ay+Az=ANz+y+2)=X0=0,

is follows that A(z,y,z) is also in W and that W is a subspace of V.
[3 marks]

Now

w = {(z,y,2):x+y+2z=0}
= {(z,9,2) 1 2=—-(z+y)}

{(z,y,—(= +y))}

= {z(1,0,-1) +y(0,1,-1)}



Since (1,0, —1) and (0, 1, —1) are clearly linearly indepedent, they are a basis
for W so W also has dimension 2. [2 marks]

Now if (z,y,z) isin UNW, then z = —(z +y) and so (z,y, —(z + 1)) is
a linear combination of (1,0,—1) and ((1,—-2,1):

(z,y,—(z +vy)) = M1,0,-1) + u(1,2,1)

this gives £ = A+ p, y = 2u and —(z +y) = —A + p. Thus p = y/2 and
A =1z —y/s (from the first two equations). The third is then also satisfied,
so every element in W is an element of U (also because the 2 basis vectors
are in W). It follows that U = W,soUNW =U and U+ W =U.

[2 marks]

1 (b). Since L(1) =23 =0-1+0-2 4+ 0- 2%+ 1- 23, the entries in the first
column of M are 0, 0, 0, 1. Similarly, we have L(z) = z?, L(z?) = z and
L(z3) = 1. It follows that the matrix M is

0 0 01
0010
M= 01 0290
10 00
[3 marks]
We next compute det(AI — M) to get
det(A\I — M) =
A 0 0 -1
0o X -1 0
=detl g 1A o
-1 0 0 A
A -1 0 0 x -1
=2l -1 xo0|-(1D] 0 -1 A
0 0 A -1 0 0
= AN = (=1)(=A+0)) + (=A(N) +1)
= M- - +1
= -1

It follows that M has two repeated eigenvalues, namely 1 (twice) and —1
(twice). [3 marks]



When A\ = 1, a vector v = a+bx +cz?+dz? is an eigenvector if L(v) = v,
so d+cz +bz? +az® = a+br + cz? +dr3. This occurs precisely if d = a and
b = ¢, so the eigenvectors are the polynomials of the form a4 bz + bz? + ax>.

[2 marks]

When A = —1, a vector v = a + bx + cz? + dz?® is an eigenvector if
L(v) = —v, s0 d + cz + bz? + ax® = —a — bz — cx? — dz®. This occurs
precisely if d = —a and b = —c¢, so the eigenvectors are the polynomials of
the form a + bx — bx? — az. [2 marks]

2. The rank of f is the dimension of im f and the nullity of f is the dimension
of its kernel. [2 marks]
The matrix of the given linear map is

1 1 -1 1
1 -1 21
A= 2 0 1 2
0 0 00

To find a basis for the image of f, we need to find a basis for the space
spanned by the columns of A: the vectors

(1715270)7 (la_laOaO)’ (_1a251a0)7 and (1311230)

Clearly the last equals the first, so the only question is whether the third is
a linear combination of the first 2. Consider

(_13 2a 13 O) = A(la ]-a 2; 0) + /J‘(]-a _15 0’ 0)

This gives =1 = A+, 2 = A —p and 1 = 2X. Thus A = 1/2 and so

u = —3/2. Since these satisfy all three equations, we deduce that (1,1,2,0)

and (1,—1,0,0) are a basis for the image and the rank of f is 2. [5 marks]
The kernel is the solution set for the equations Au = 0, giving

r+y—2+t=0; z—y+224+t=0; 2z+2+4+2t=0.

It is clear that if we add the first two equations, we obtain the third, so we
are looking for the solution set of

z+y—2+t=0;, z—y+2z4+t=0.

The second equation says y = = + t + 2z and then the first becomes 2z +
z + 2t = 0. Thus the solution set consists of vectors of the form

(x,z+t—4(x +1t), -2z — 2t,t) = (z,—3z — 3t, -2z — 2t,t).



This is clearly a two dimensional space spanned by the vectors (1, —3, —2,0)
and (0,—3,—2,1) so the nullity is 2.
[6 marks]
To find a u with f(u) =0 and u = f(v), we need u in ker f and in im f.
Thus u of the form A(1,1,2,0) + p(1,—1,0,0) = (A + p, A — p,2X,0). Also
u is in the kernel of f so

Adp+Ad—p—22x=0and A+ p—A+p+2(2)) =0

thus, we obtain A = —2y and so any vector of the form (A(—1,3,2,0) is the
required intersection. [2 marks]

Now suppose that f2 = f, then if v is in ker f and im f, we see that
v = f(u) and 0 = f(v) = f(f(u)) = f*(u) = f(u) so v = f(u) = 0 and so
the intersection of im f and ker f is zero
[2 marks]
If now v is any element of v, we can write v = (v— f(v))+ f(v)). Clearly,
f(v) is in im f and, when we apply f to v — f(v), we obtain

flo—f) = @) = f(f(v) = f() = f*(v) = f(v) = f(v) =0

so that im f + ker f = V and so the sum is direct.
[4 marks]

3. The dual space is defined to be the set of all linear maps from V to R.
Given 6, ¢ in V*, we can define 6+ ¢ by (0+ ¢)(z) = 0(z) + ¢(z). Similarly,
for A in R, we define (A\0)(z) = A\(0(x)).

Given a basis {z1,z2,...,zn} for V, we define ¢; as the unique linear
map which maps z; to 1, but all other basis elements to 0. To prove this
gives a dual basis, suppose first that f is any linear map from V to R. Let
A; be that scalar which f maps z; to (so that A\; = f(z;)). Then for any j
the map Ai¢1 +- -+ Ay, takes z; to \; (since ¢;(z;) = 0 for i # j). Thus the
maps f and A1+ -- Ay, agree in their action on a basis for V' so must be
equal and the vectors ¢1, ... ¢, span V*. Now to check linear independence,
suppose that \i¢1+- - - Ap¢pp, = 0. Then, for any z;, (A1d1+--- Andp)(zj) =0
we also know that (A1¢1+--- A\dn)(z;) = Aj, so each A; would then be zero.

Thus {¢1,...,¢n} is a basis for V*. [8 marks]
Thus we have that
$1(v1) =1;  ¢1(v2) =0  ¢1(v3) =0
$1(ve) =0;  da(v2) =1  ¢a(v3) =0
¢1(v3) = 05 $3(v2) =0 ¢s3(v3) = 1.



[2 marks]

Now if ¢1(z,y,2) = a2+ b1y +c12, we obtain a1 +b1+¢; = 1, a1 +2b1 +

4¢; = 0 and a; — by + ¢1 = 0. We now solve these equations for aq, b1, c; to

get 2a1+2c1 =1 (so ¢; = 1/2—a1). We can now re-write the first two to say

by +1/2=1(so by =1/2) and a1 +4c; = —1 (so a1 = +1 and ¢; = —1/2),

so that ¢1(z,y,xz) = £+ y/2 — z/2. Similar calculations are carried out to
determine ¢o: we solve

ag+by+co=0, as+2by+4co =1, andas —by+co =0

These give ag = —1/3,by = 0 and ¢y = 1/3 so that ¢o(z,y,z) = —z/3+2/3.
For ¢3, we solve

a3 +b3+c3=0, az+2b3+4c3 =0, and az3 — bz +c3=1.

This time the solution is a3 = 1/3,b3 = —1/2 and ¢3 = 1/6 so that ¢3 is
given by ¢3(z,y,2) = /3 —y/2 + z/6. [6 marks]

Now suppose, that the given f is a linear combination of {¢1, ¢2, ¢3} so
that f = ap1 + bpa + cé3. This means that for (z,y,2) in R?

f(wayaz) = a¢1($ayaz) + b¢2($ayaz) + C¢3(xayaz)

Using the expressions for the values of ¢1,¢2 and ¢3 from earlier in the
question, we obtain

F(2,y,2) = ala+y/2—2/2) +b(~2/3+2/3) +c(a/3—y/2+2/6) = z+y+2.

Equating coefficients of z gives 1 = a —b/3 + ¢/3 (or 3 =3a —b+c¢). The
coefficients of y give 1 = a/2 — ¢/2 (or 2 = a — ¢), and the coefficients of z
give 1 = —a/2+b/3 +¢/6 (or 6 = —3a + 2b + ¢). We now need to solve
these equations.The second gives ¢ = a — 2, so we can re-write the first and
third as 3 =3a — b+ (a—2) (or 5 = 4a — b) and 6 = —3a + 2b + (a — 2)
(so that 8 = —2a + 2b). It only remains to solve the simultaneous equations
5 =4a — b and 8 = —2a + 2b. Adding twice the first to the second gives
18 =6a (sothat a=3 and ¢ =1). Alsob=—-5+4a=-5+12=T.

[6 marks]
4. Amap f:V xV — R is a bilinear form if

(BF1) for all uj,ug,vin V and A\,p € R

f(Aug + pug,v) = AMu1,v) + pf(ug,v),

and



(BF2) for all u,v1,v2 in V and \,u € R

fu, Aoy + pwg) = Mu,v1) + pf (u, v2).

[2 marks]
The given map is not bilinear because (for example)

f((1,0)+(1,0),(1,0)) = f((2,0),(1,0)) =4 # f((1,0),(1,0))+f((1,0), (1,0))

[2 marks]
We are given that f((z1,z2), (y1,y2)) = T1y1 — Z1y2 + T2y2. Thus
£((2,2),(2,2) 2.2-2.2+42.-2=4
f((2,2),(0,1)) = 2:-0—-2-1+2-1=0
£((0,1),(2,2) = 0.-2-0-2+1-2=2
f((0,1),(0,1)) = 0-0—-0-1+1-1=1
. .. 4 0 . )
so the required matrix is A = ( 9 1 ) The form is not symmetric.
[4 marks]
Similarly for the basis (1,1), (0, -1)
£((1,1),(1,1)) 1.1-1-1+41-1=1
f((1,1),(0,-1)) = 1-0-1-(=1)+1-(-1)=0
£(0,-1),(1,1)) = 0:1-0-1+(-1)-1=—1
f(0,-1),(0,-1)) = 0-0-0--1+(-1)-(-1)=1=1
. . . .. 10
so, in this case, the required matrix is B = ( 11 ) [3 marks]

Alson(l/2 O)so,

(% (1) )
(10

PTAP =

0
1
-1



as required. [3 marks]

Now suppose that A is the matrix of a symmetric bilinear form so that
A = AT, If B is the matrix of f with respect to another basis and P is the
change of basis matrix between these bases, then we know that B = PTAP.
Then

BT = (PTAP)T = PTATPTT — pTAP =B

(using that facts that PTT = P and AT = A). Thus B is also a symmetric
matrix. [6 marks]

5. The given form is q(z,y,z) = 2 + 62y + y? + 422 so its matrix is

1 30
A=1310
0 0 4
[1 mark]
The eigenvalues of A are the zeros of the polynomial
det(AI — A) =
A-1 -3 0
det -3 A-1 0 =
0 0 X—4
A-1 0 -3 0
(A—l)det( 0 )\_4)+3det< 0 )\_4> =
A=1DA=-1)(A—-4)+3(-3X1+12) =
A=A -1)?-9) =
A=4)(N-22-8) =
A=A —-4)(A+2).
It follows that the eigenvalues are 4 (twice) and —2. [4 marks]

The eigenvectors for eigenvalue —2 are given by

1 3 0 T —2z
310 y | =1 -2y
0 0 4 z —2z

so we obtain the equations z+3y = —2z (or z +y = 0), 3z +y = —2y (also
giving z +y = 0) and z = —2z (so z = 0). Thus a typical eigenvector is
(z,—z,0). [2 marks]



The eigenvectors for eigenvalue 4 are given by

1 3 0 T 4z
310 y | = 4y
0 0 4 z 4z

This time the equations are z + 3y = 4z (or z = y) 3z +y = 4y (also giving
x =y) and 4z = 4z (so no constraints on z). A typical eigenvector is of the
form z(1,1,0) + 2(0,0,1). [3 marks]
The required P is obtained by putting these eigenvectors into columns

SO
1 -2

P=| -1

0

S = =

0
0 and D =
1

S > O
== =]

0
0
[2 marks]
The surface becomes 4X2 +4Y? — 272 = 25, a hyperboloid of one sheet
with circular cross-sections on planes parallel to the XY-plane (cooling tower
shape) [4 marks]
Because of the shape of the surface, it is clear that the points nearest
the origin are those on the XY -plane. Since this intersection is a circle of
radius 5, the required minimum distance is 5.
[2 marks]

The surface g(z,y, z) = —25 will have equation 4X2 +4Y?2 222 = 25
or —4X? — 4Y?% + 272 = 25, so is a hyperboloid of two sheets.  [2 marks]

6. An isometry on R? is a map from R? to itself which is a bijection and
preserves distances.

[2 marks]
An example of an isometry which doesn’t fix 0 is any translation. Such
a map is obviously a distance preserving bijection. [2 marks]

The map ¢ will take the vector (1,0) to that obtained by rotating anti-

clockwise through 90° so (1,0) maps to (0,1) and (0, 1) itself maps to (—1,0).
. . -1 .

Thus f(z,y) = (—y,z) and the matrix of ¢ is M = (1) L It is
clear that ¢ is a bijection, because ¢ has an inverse. Also ¢ preserves
distances because the distance between (z1,y1) and (z2,y2) is the square
root of (z1 — z2)% + (y1 — y2)?, whereas the distance between ¢(x1,y1) and
é(x2,y2) is the square root of (—y1) — (—y2))% + (z1 — z2)?. These are clearly
equal, so ¢ is an isometry. [6 marks]



Since £ is the y-axis, (1,0) is mapped by o, to (—1,0), and (0,1) is
mapped to itself. It follows that oy(z,y) = (—z,y) and that A, the matrix
-1 0

01
inverse) and preserves distance: with the notation of first part, we want
to compare the square root of (z1 — z2)? + (y1 — y2)? with square root of
(—x1 — (—z2)? + (y1 — y2)? and these are clearly equal.

representing oy is A = ( Clearly oy is a bijection (it is self-

[4 marks]
Also k is the line z = y, so (1,0) is mapped by o, to (0,1), and (0,1)
is mapped to (1,0). It follows that B, the matrix representing oy is B =
01
1 0 )
Finally the composite map will have matrix

-1 0 01 0 -1
AB:( 01)(1 0>:<1 0)'
[2 marks]

This is the matrix M and so represents a rotation anti-clockwise through
90°. The powers of M are M? = —I, M® = —M and M* = I, so the required
integer is 4. This shows that after 4 rotations through 90°, one returns to
the starting position. [2 marks]

[2 marks]

7. A group is a set G with a law of composition satisfying the following
axioms:

(G1) for any =,y € G, zy is in G;

(G2) for any z,y,z in G, z(yz) = (zy)z;
(

(

)
G3) there is an element e in G such that for all g € G, ge = g = eg;
)

G4) given an element g € G, there is an element g—! of G with gg~! = e =

g lg.

A subgroup of a group G is a non-empty subset of G which it itself a
group under the same operation as that of G.
Given two groups (G, o) and (H,x), a map f is a homomorphism if

flgoh) = f(g)* f(h)

for all elements g,h of G .
The kernel of f is the set of elements g in G such that f(g) = ey.



The image of f is the set of those elements in i which are images of
elements of G under f. [8 marks]

To show that G is a group, first consider the product of two general
elements in G:

1 aq b1 1 a9 b2 1 ai + ag b1 + coa1 + bg
01 C1 01 (&) 01 c1+ ¢
00 1 00 1 00 1

Since this has the required shape (1’s along main diagonal and zero’s below
it), this checks closure. The multiplication of matrices is always associative,
the identity element is in G (with a = b = ¢ = 0), so it only remains to see
if the inverse of an element of G is also an element of G. By ‘inspection’

1 b\ 1 —a ca—b»
0 c =101 —c
0 1 0 0 1

O = 9

This checks inverse exist, so G is a group. [4 marks]
Next, to show that we have a subgroup, we consider

1 aiq bl 1 a9 b2 1 aj + ag bl + aqa1 + b+2
01 aq 01 a9 01 ai + as
00 1 00 1 00 1

Again this has the shape of a general element in the subset. Again asso-
ciativity and identity are clear and as for inverses, the above formula shows
that the inverse of an element in the subset has the required form.
[3 marks]
To show that ¢ is a homomorphism consider two matrices A, B in G,
then

1 aq b1 1 ao b2
¢(AB) = ¢ 01 C1 01 C2
00 1 00 1
1 a1 +az2 b+ coar +bie
= ¢ 0 1 c1 + ¢y
00 1
= a1+ a9

Since ¢(A) = a1 and ¢(B) = az and the group operation in H is addition,
we see that ¢ is a homomorphism. [2 marks]

10



The kernel of ¢ is the set of matrices in G with ‘a = 0, so

1 b
kerp ={| 0 ¢ |:bceR}
0 1

S = O

The image of ¢ is the whole of R since any real number could occur as the
appropriate entry of an element A of G. [3 marks]

8. (i) To show e is unique, suppose that G had two identities e; and es then
e1 = g = gey and eag = g = geo for all g in G. Now consider the element
ejez. Since e is a left identity, this is e2, and since es is a right identity this
is e] s0 e] = ea. [2 marks]

(i) Suppose that aob = g = aoc for some elements a, b, ¢ in G. Multiply
the equation aob = aoc on both sides by the inverse of a to get a=!o(aocb) =
a~!o(aoc). Now use associativity to get (a ' oa)ob= (a ! oa)oc. Since
a~! is the inverse for a, a~! o a = e, so we obtain eo b = e o c. The result
now follows since e is an identity element. [2 marks]

Now if an element g is repeated in the same row of a table, then g will
be of the form g o b and also of the form a o ¢ for some a,b, and ¢, so the

above argument shows that b = c. [1 mark]
For columns, if @ o b = ¢ o b, we multiply on right by b~! and again use
associativity, inverse and identity to deduce that a = c. [2 marks]

(iii) Inspecting the given partial table, we see that fd = d which can
only happen in a group when f is the idenity element. This also means that
d is the inverse of a (and so a is the inverse of d). We can now fill in more
of the partial table:

ola b ¢ d f
a 7 f a
b b
c c
d|f b d
fla b ¢ d f

The entry marked ? cannot be a or f (already in row), or b or ¢ (already in
column) so must be d. This makes the second entry in this row is not d, f
or a and since b is already in this column this entry must be c¢. The first

11



entry must be b. This gives

ola b ¢ d f
alb ¢c d f a
b b
c c
d| f b d
fla b ¢ d f

We can now fill in the fourth row since its second entry must be a and its
fourth entry must be ¢

ola b ¢ d f
alb ¢c d f a
b b
c c
d|{f a b ¢ d
fla b ¢ d f

We can now fill in the first column with third entry d and second entry c.
This gives

ola b ¢ d f
alb ¢ d [ a
b|c ?7 b
cld c
dif a b ¢ d
fla b ¢ d f

Since the entry marked 7 cannot be b, f,, ¢ or d, it must be a and the
corresponding entry in the third row is b. This then forces the table to fill
in uniquely as shown

ola b ¢ d f

alb ¢ d f a

blc d f a b

cld f a b c

d{f a b ¢ d

fla b ¢ d f
[6 marks]
(iv) Inspecting the given table, we see that bo(cod) = boa = d, whereas
(boc)od =aod=Db, so the operation is not associative. [3 marks]

12



Now suppose G is a group so that we have (from the given information)

a partial table

e a b c d
ele a b c d
ala e c ?
b|b e
clc e
d|d e

If G is to be a group, the entry marked ? cannot be a, e or ¢ (already in row
or d (already in column), so must be b. This makes the other missing entry

in this row d. Giving

QL O o8&

a 8 o

d

o Q|8

O O oS

QO w00
(S EESHESH

e

The entry marked now is not c¢,d or b, e so must be a. This makes the last
entry in this row ¢ and the second entry d.

b

QLo o8 o

QL o oo ol

QU 88

b
c
e

o L o|0
[ IR SN~ IS H -

The missing entry in the last column must be a, the third entry in that row
must then be d and the second b. The final row then fills in uniquely and
we obtain the table given at the start of the question. Since we have shown
that this operation is non-associative, G is not a group

13

[6 marks].



