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SECTION A
{v1,..., v} are linearly independent if the only solution to Ajv; + ... A\pvp = 0 is
given by Ay = -+ = Ay = 0. (Alternatively: none of vy,...,v; can be written as a

linear combination of the other vectors.)

[1 mark]|. Standard definition from lectures.
First method: First put uq,us, uz as the rows of a matrix, and use row operations
to reduce to echelon form. Solution:

1 -1 1 3 0 1
1 2 -1} —...— [0 3 =2
3 0 1 0O 0 O

Thus (3,0,1),(0,3,—2) is a basis of U, and the dimension is 2.

Second method: Find a nontrivial solution to the equation Auy + pus + vug = 0;
eg. 2(1,-1,1) + (1,2,—1) — (3,0,1) = (0,0,0). So the three vectors are linearly
dependent, so dimU < 3. On the other hand, there are clearly two linearly inde-
pendent vectors among the three vectors given (any pair will do), so dimU > 2.

Remark: An easy way to check whether a given basis for U is correct is to note
that U = {(z,y,2) : * — 2y = 3z}.

[3 marks]. Standard exercise.
First method: Again, put wy, wsy, w3 as the rows of a matrix, and use row operations
to reduce to echelon form:

-4 1 -2 3 0 1
2 1 0 — ...— |0 3 -2
5 1 1 0O 0 O

Therefore the space W also has the basis {(3,0,1),(0,3,—2)}, and so U = W.
Second method: Since we have already computed the dimension of U as 2, and
the dimension of W is clearly at least 2, it is enough to check that W C U i.e., each
of the vectors w; belongs to U. This can be done, for example, by writing them as
linear combinations of u; and uy (again solving a system of linear equations):

wy = —3U; — U, Wy = Uy + Uy, W3 = Uy + 2us.

[3 marks]. Standard exercise.
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Now V' = Pol3(R) is the vector space of polynomials with real coefficients of degree
at most three, and

U:={(2a+0b)a*+ar’*— (2a +b)xr —b:a,b € R} and
W ={(b—a)x®+cx® + (a — b)x — c: a,b,c € R}.

Let v; = (2a; +b1)x® + a12? — (2a1 + b))z — by and vy = (2ay + bo)2® + agz? — (2a2 +
by)x — b)2 be arbitrary elements of U, and let p, A € R. Setting a := A\a; + pas and
b := A\b; + ubsy, a simple calculation shows

vy + vy = (2a + b)2® + az® — (2a +b)x —b € U.

So U is a subspace of V.

[3 marks]. Seen similar in exercises
By definition of U, (223 + 2? — 2z, 2% — x — 1) is a spanning set of U. Since the two
vectors are clearly linearly independent, it is also a basis. Thus the dimension of U
is two. Similarly, (2® — z,2% — 1) is a basis for W, and the dimension of W is also
two.

(We mention here that U = {az® + b2®> + cx +d:a+c = 0and a = 2b — d}
and W = {az® +bz* + cx +d:a+c=0and b+ d = 0}; for either space, any two
linearly independent vectors would provide an acceptable answer.)

[4 marks]. Seen similar in exercises

To find U N W, we need to decide when an arbitrary vector v of V' belongs to
both U and W. There are several ways of doing this:

(i) Using the definition of U and W, we need to solve the equations

2a1+b1 :bg—ag
a1 = Cy
—2&1 — b1 = Q9 — bg
—b; = —ca.
So we have UNW = {3az® 4+ az* — 3ax — a : a € R}. Thus 32° +2? — 3z — 1
is a basis for UNW, and dim(U NW) = 1.
(ii) Similarly, we can use the bases for U and W and solve the equation

M (22% + 2% — 22) + (2 —x — 1) = N2 — ) + po(2* — 1).

Solving this equation, we get uy = ps = Ay, and Ay = 2A; + p; = 3\;. Again,
we obtain 3z% 4+ 22 — 3z — 1 as a basis for UNW.

(iii) It is also sufficient to exhibit one single vector which belongs to both U and
W for example, the vector 3z° + 22 — 3z — 1 (which corresponds to a = b = 1
in the definition of U, and to a = 0,b = 3, ¢ = 1 in the definition of W). Since
U # W, the dimension of U N W must then be 1.

[4 marks]. Seen similar in exercises
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We thus have dim(U + W) = dim U + dim W — dim(U N W) = 3. (Note that we
have U +W = {az® + bx® + cx +d : a+c=0}.) Since UNW =# {0}, U + W is not
the direct sum of U and W.

[2 marks]. Standard exercise.

20 marks in total for Question 1
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(a) We compute:

flug,u1)=2-1-14+1-(=1)+2-(=1)-(=1) =3,
flug,ug) =2-1-14+1-(=2)+2-(=1)-(=2) =4,
flug,up)=2-1-14+1-(=1)+2-(=2)-(—=1) =5.
flug,ug) =2-1-14+1-(=2)+2-(=2)-(=2)=8.

So, the matrix of f wrt uq, uy is

().

[2 marks] Standard exercise.

Similarly,
flo,v1) =2-(=2)- (=2)+(-2)-1+2-1-1=8,
flon,v2) =2-(=2) 54+ (=2)-1+2-1-1=-20,
flog,v1) =2-5-(=2)+5-14+2-1-1=—13,
f(va, 1) =2-5-54+5-1+2-1-1=57,

So, the matrix of f wrt vy, vy is

8 =20
B= (—13 57 ) '
[2 marks] Standard ezercise.
To compute the change-of-basis matrix, we write v; as linear combinations of the
u;. (Again, this will involve solving a system of linear equations.)

(—2,1) = =3-(1,=1) +1-(1,-2)
(5,1) =11-(1,—-1) — 6 - (1, —2).

So the change-of-basis matrix is

-3 11
po (1)

Alternatively, we can obtain P as the composition of change-of-basis matrices
from the given bases to the standard basis:

(GG GG

Finally, it is easily checked that

Tap_ (3 1) (3 4\ [-3 11\ _
rar=(3 ) G5 (7 5) -

[3 marks]. Seen similar in exercises.
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(b) The matrix of the quadratic form
q(z,y, 2) = 4% — 4y* + 2% + 6ay.

with respect to the standard bases is

4 3 0
A=13 -4 0
0 0 1

[2 marks]. Standard exercise.
We can find a basis with respect to which ¢ is diagonal by finding a basis consisting
of orthogonal eigenvectors of A. The characteristic polynomial is

(A—4) -3 0
detM [ —A)=[[ =3 (A+4) 0
0 0 (A—1)

-0-n|("5Y o)
=A=1)(N\?—-16-19)

=A=1)A-=5)(A+5),

so the eigenvalues are 5, —5 and 1. Solving the corresponding linear equations gives
eigenvectors (3,1,0), (1,—3,0) and (0,0, 1). The desired matrix P is thus given by

3 1 0
P=11 -3 0
0 0 1
The desired diagonal matrix is
50 0 0
D=P'AP={0 -50 0
0 0 1

[8 marks]. Seen somewhat similar in ezercises.

The diagonal matrix has full rank, so the rank of ¢ is 3. The signature is the

number of positive entries minus the number of negative entries, and is thus 1. The
surface is a hyperboloid of one sheet.

[3 marks]. Standard exercise.

20 marks in total for Question 2



SOLUTIONS FOR MATH744 (MAY2006)

(a) Let ey = 22, €3 = 2, e5 = 1. Then
90(61):SO(ZL’Q):3x2—2x+2:3'61—2'62—1—2-63,

so that the first column of the matrix should have entries 3, —2,2. Proceeding
similarly for e and ez, we get

3 10
M=|-2 11
2 11
[3 marks] Seen similar in exercises.
(b) We now compute
A—3) -1 0
det( N\ —M)=| 2 A=1) -1
-3 -1 (A=1)
A=3) -1

:()\—1)’< (A —3) _1’

2 (A—l)'Jr‘ 2
=A=D(A=3)A=1)+2)+(1 =21
=A==\ =4 +4)=A-1)(\—2)>2

So the eigenvalues of A are 1 and 2.

[4 marks] Standard exercise.

(c) To find the eigenvectors corresponding to these eigenvalues, we must solve the equa-
tions (M — I)v =0 and (M — 2[)v = 0:

2 10 210
20 1| —1(0 1 1],
2 10 000
1 1 0 110
2 -1 1] —1]011
2 1 -1 00 0

So we see that the eigenvectors with eigenvalue 1 are of the form (A, —2\,2)) and
those with eigenvalue 2 are of the form (A, =X, \).
[3 marks] Standard ezercise.
(d) In particular, the matrix M is not diagonalizable, since we can only find two linearly
independent eigenvectors.
[1 mark] Standard ezercise.
(e) The multiplicity of the eigenvalue 2 is two, and (1,—1, 1) is an eigenvector of M for
this eigenvalue. We need to find a vector v = (a, b, ¢) such that Mv = v +2v. This

is a linear equation: we have to solve

(M —2I)v = vy.
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Writing this equation in matrix form, and transforming it into echelon form (doing
the same transformations on A — I as above), we get

1 1 0] 1 1 101
-2 -1 1|-1 | — {01 1]|1
2 1 —-1] 1 00 0]0

So v = (a, b, ¢) is a suitable vector if and only if a+b = 1 and b+ ¢ = 1; for example,
v=(1,0,1) is a solution.
[5 marks] Seen somewhat similar in exercises.
So a basis which will put M into Jordan normal form is given by

(1,—1,1),(1,0,1), (1, —2,2).

To answer the question, we have to transform this basis back into our original vector
space, where it becomes

B=(@*—r+1,2°+1,2* - 22 +2).

[2 marks] Unseen.
We have

o> —z+1) =20 -20+2=22* -2+ 1)+0- (2> + 1)+ 0 (2* — 20+ 2),
@ +1)=32"—az+3=1-(2>—2+1)+2- (2> +1)+0- (2 — 22+ 2),
o —20+2)=0-(2*+1)+0- (2> —2+1)+1-(2* - 22 +2).
So the matrix of ¢ with respect to B is indeed

2
A:

O N =

0
0 0],
0 1
as expected.
[2 marks] Standard.
20 marks in total for Question 3
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A group is a set G together with a binary operation * such that: (G1) for all
91,92 € G, g1 * g2 € G; (G2) for all g1, 92,93 € G, g1 * (92 * g3) = (91 * g2) * g3;
(G3) there exists an element e € G such that, for all g € G, ex g = g*xe = g;
(G4) for every g € G, there exists g~ € G such that gx g ' =g '*xg=e.
[1 marks]. Standard definition from lectures.
If G, H are groups, then amap ¢ : G — H is a homomorphism if, for all ¢,, g» € G,
©(g1 *1 g2) = ©(g1) *2 ©(ga), where #; is the group law in G and %, is the group law
in H.
[1 mark]. Standard definition from lectures.
The map ¢ is injective if, for all g1, g2 € G, p(g1) = ¢(g2) = g1 = g2. The map ¢
is surjective if, for all h € H, there exists g € G such that ¢(g) = h.
[1 mark]. Standard definitions from lectures.
Let g1 = (a1 bl) and g, = (a2 b2> be arbitrary elements of G. We have
C1 d1 (&) d2
@91+ 92) = 3((a1 + az) + (b1 + b2)) — 6((c1 + c2) — (dv + dz))
= 3a1 + 3@2 + 3b1 -+ 3b2 — 661 — 662 -+ 6Cl1 + 6d2
= (3((11 + 3b1) — 6(01 — dl)) + (3(@2 + 362) — 6(02 — dg))

= (1) + ¥(g2)-

Hence ¢ is a homomorphism.
[2 marks]. Seen similar in exercises.

L0y _,_ (01
Ylo o/ °"%lo o)

so ¢ is not injective. For any matrix A € G, the value p(A) will be an integer
multiple of 3. In particular, p(A) # 1 for all A € G, so ¢ is not surjective.

[2 marks]. Seen similar in ezercises.

Statements (i) and (iii) are true. Statement (ii) is false when the group is non-

abelian; an example is given e.g. by taking the symmetric group Ss.

[3 marks]. From Lectures.

Similarly, a counterexample in S3 to (iv) is given by letting a be the permutation

which exchanges the first two elements, and b and ¢ be the two cyclic permutations.

[2 marks]. Unseen.

We have e.g.
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(d) First of all, since A = AC', C' must be the identity element of the group. So we can
fill in the corresponding column and row:

*'A' B C D E F
AlB 727 A E 7 7
B/C ? B 7 7 7
C/lA B CDEF
D|?” ED C 7?7 7
El?7 7?2 E A 7 7
F|? 72 F 7 7 C
Next, note that BA = AAA = AB = C'. Furthermore, BB = AAAA = AC = A.
*'A' B C D E F
AlB CA E 7 7
B/IC A B 7 7 7
C/lA B CDE F
D|? ED C ? ?
ElI? 7?7 E A 7 7
F\? 2 F 7?2 7 C

Every line and column in the group table must contain each element. The first
row is only missing elements D and F'; however, the last column already contains
an F. So we can complete this row:

*

A B CDE F
A|/B C A EF
BI/C A B 7 7 7
C/IABCDEF
D|? ED C 7 7
E|l? 7?7 E A 7 7
Fi?2 72 F 72 7 C

Similarly, we can fill in the second row, which is still missing D, E and F.
Continuing in this way, we fill in the remaining entries:

*T'A' B C D E F
AlB CA EF D
B/C A B F D E
C/lA B CDE F
D/F ED C B A
E/ID F EA C B
FIE D F B A C.

[5 marks]. Seen somewhat similar in ezercises.

(e) The permutation group S3 has the same group table (letting C' be the identity, A

and B the two cyclic permutations, and D,E and F' the permutations which keep
one element fixed while switching the other two).

[3 marks]. Unseen.

20 marks in total for Question 4
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(a) The rank of ¢ is the dimension of Im(y). The nullity of ¢ is the dimension of

ker(yp).
[1 mark]. Standard definitions from lectures.
The rank and nullity theorem states that

dim V' = rank(p) + nullity(¢).

[1 mark]|. Standard theorem from lectures.
For vy = (x1,91,21) and vy = (22, ¥s, 22) in R® and A\, 4 € R, we have

(A1 + pvo)

_ (A1 + pae) + Ay + pye) + (A21 + p22)) (A2 + pz2) + (Ayn + pye)
2()\%1 + ,uxg) — (/\y1 + uyg) — ()\Zl + /LZQ) 0

_( Moty ) (e tye+22) Az yn) + plze + )
A2x1 —y1 — 21) + (212 — Y2 — 22) 0

= Ap(v1) + pep(va).

Thus ¢ is linear.
[2 marks]. Standard exercise.

There are several ways of determining the rank and nullity; usually we would
want to use the rank and nullity theorem. For example, let (z,y,z) € R3. Then
(x,y, z) € ker(yp) if and only if

r+y+2=0, z+y=0 and 2xr—y—2=0,

which is clearly the case if and only if 2 = —y and =z = 0. So

ker(¢) = {(0,y, —y) : y € R} = span((0, 1, —1)).
So nullity(¢) = 1. Consequently rank(y) = dim(R?) — nullity(¢) = 2.
[3 marks]. Standard exercise.

(Remark: We have Im(yp) = {(CCL 8) 120 =c+ 31)}.)
(b) We have
ker(p) = {(z,y,z,w) : x + z = w, 2x = z + 2w, 4z + z = 4w}
={(z,y,z,w) : 2 =0,z =w} = {(z,y,0,2) : 7,y € R*}.

A basis for this space is given by (1,0,0,1),(0,1,0,0), so nullity(¢) = 2.
[2 marks]. Standard ezercise.
In particular, we see that rank(p) = 4 — 2 = 2, so we only need to find two
linearly independent vectors in the image of ¢. Two such vectors are given by
v = ¢(0,0,1,0) = (1,—1,1) and vy = ¢(1,0,0,0) = (1,2,4). (It is easy to check
that Im(y) = {(x,y,2) : 2 = 22 + y}, so any basis of this space gives a correct
answer. )
[2 marks]. Standard exercise.
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(¢) To put ¢ into standard form, we start by extending the given basis of ker(y) to a
basis of R*, for instance to the basis

B =((0,0,1,0),(1,0,0,0), (1,0,0,1), (0, 1,0,0)).

We need to check that these are linearly independent, but for this choice of vectors,
this is immediately obvious.
[3 marks].
Now we need to take the two vectors of B which are not in the kernel and compute
their images:

©(0,0,1,0) = (1,—1,1) and ¢(1,0,0,0) = (1,2,4).
We extend these two vectors to a basis of R?, e.g. by taking
C=((1,-,1,1),(1,2,4),(1,0,0)).

Again we need to check that this really is a basis of R®. We could either check that
the three vectors are linearly independent. Alternatively, it is easy to check directly
that (1,0,0) is not in the image of .
[3 marks].
It remains to compute the matrix A: we have

©(0,0,1,0) = (1, )—1%L—LD+0%LZ®+0%L&®,
©(1,0,0,0) = (12@ 0-(1,—1,1)+1-(1,2,4) +0-(1,0,0),
©(1,0,0,1) = (0,0,0) =0-(1,—1,1)+0- (1,2,4) + 0- (1,0,0),
©(0,1,0,0) = (0,0,0) =0 (1,—1,1) +0- (1,2,4) + 0 (1,0,0).

So we indeed have

b

I
OO =
O = O
o o o
o OO

as required.
[3 marks]. Similar example seen on exercise sheet.

20 marks in total for Question 5
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(a) A function ¢ : V' — V is an isomorphism if ¢ is linear, injective and surjective.
[2 marks]. Standard definition from lectures.
(b) The composition ¢ o ¢ of two isomorphisms is again an isomorphism. Indeed, we
see that linearity holds:

o(W(Avr + pg)) = (AP (v1) + pp(v2)) = Ap(¥(v1)) + (P (va)).

If p(1p(v1)) = @(1h(v2)), then 1p(vy) = ¥ (ve) by injectivity of ¢, and thus v, = vy
by injectivity of 1. So ¢ o %) is injective.
Let w € V. Then by surjectivity of ¢, there is v; € V such that ¢(v;) = w. By
surjectivity of ¢, there is v € V' such that ¢(v) = v1. Then p(¥(v)) = p(v1) = w,
S0 ¢ o 1) is surjective.
[4 marks].
Associativity is clearly satisfied. The neutral element is given by the identity map
¢(v) = v. The inverse element of ¢ is given by its inverse ¢~
[3 marks]. Similar examples seen in exercises and lecture.
(c) If V is n-dimensional, the dimension of L(V,V) is n?>. (We saw in lectures that
L(V, V) is isomorphic to the space of n X nm-matrices; an isomorphism is given by
the function which takes a linear map to its representation with respect to a given
basis.) [3 marks]. Seen (once) in lecture.
(d) The set of isomorphisms is not a subspace of L(V,V), as it does not contain the
zero element; i.e. the linear map ¢(v) = 0. [4 marks]. Unseen.
(e) L(V,V) is not a group with respect to composition, since its identity element would
have to be the identity map ¢(v) = v, but e.g. the zero map ¢(0) = 0 does not have
an inverse. [4 marks]. Unseen.

20 marks in total for Question 6



