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1. (i) Find the general solution of the differential equation

Z—Z =e¥(2% + 2),
putting your answer in the form y = f(x).
[6 marks]
(ii) Solve the initial value problem
%_4%—962, y(1) =0
[5 marks|

(iii) By forming an exact differential, or otherwise, solve the initial value
problem
dy 1—32%y?
9= = —— 27
dx 3y
with y(1) = 2.
[10 marks]

2. A pendulum driven by the force f(t) obeys the differential equation

d2
d—tg +w?y = f(1).

If the force f(t) is a periodic function, with period 27, satisfying
fo)y=t for —mw<t<nw

show that f can be represented by the series

=32

(=1)"sinnt
n=1"T

Use this result to calculate the Fourier series for the steady-state solution
for y(t). You may assume that resonance does not occur.
[20 marks]
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3. Solve the differential equation
20°2" —x2'+ 2z =1 +1

with the initial conditions z(1) =0, z'(1) = 1.

[20 marks]|
4. Find the general solution to the system of equations
d*z
d*y
[20 marks]
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5. The function u(x, y) satisfies the first order partial differential equation

ou ou
(x + 1)— -|—3(y+ Q)a—y

= 1
o u +

in the domain z > 0 and the boundary condition
u(0,y)=y> on z=0.

(i) Show that the characteristic curves for this partial differential equation
can be written as

r=c —1, y=(s+2)e* -2

[8 marks]
(ii) Hence, or otherwise, determine the function u(x,y).
[12 marks]
6. The function f(z) has period 7, and it has the value
f(z) = exp(—ax) for 0<z <.
(i) Sketch f in the range —27 < z < 2.
[4 marks]
(ii) Calculate the Fourier series for f(x).
[16 marks]|
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7. A function u(z,y) satisfies Laplace’s equation in the rectangle 0 < z < a,
0 < y < b together with the homogeneous boundary conditions

u(0,y) = u(a,y) =0, 0<y<b
onz =0and x = a.

(i) By seeking solutions of the form F(z)G(y) show that the above prob-
lem has solutions of the form

u(z,y) = sin <@> [Cn cosh (ﬂ) + D, sinh (@)]
a

a a

where n is an integer and C),, and D,, are constants.

Hence write down the general solution of Laplace’s equation in the
rectangle for the given boundary conditions.
[10 marks]

(ii) Find the solution to this problem, i.e. find all C,, and D, given that
u(z,y) satisfies the boundary conditions

u(z,0) =0, u(z,b) =1, 0<z<a

ony=0andy=>h.
[10 marks]
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