THE UNIVERSITY
of LIVERPOOL

a) [6 marks]

The Navier-Stokes equations of motion can be written as follows:

0
p (8—1; + u.Vu) = —Vp+uViu

Non-dimensionalise this equation based on characteristic length scale, L,
and velocity scale, U, and scale pressure based on the inertial terms. Define
an appropriate Reynolds number.

b) A study is performed on the aerodynamics of insect wings. Measurements
are made on thin plates shaped exactly like fly wings but with linear di-
mensions four times larger.

(i) [3 marks|

What should the velocity in the wind tunnel be to correctly model a
flow of speed 200cm/s around a real insect wing? State any assump-
tions you make.

(ii) [6 marks]
The drag on the model wing in the wind tunnel is measured as 3 X
10~3gem/ s2. Using dimensional arguments, explain why the drag can
be written as

1
D = SCppU°L?,

where Cp only depends on the Reynolds number and the shape of the
wing. Calculate the drag on the real wing explaining carefully your
method.

(iii) [5 marks]
How would your answers to (i) and (ii) change if you ran the same
experiment in a tank of water? Assume pu, and p, represent the vis-
cosity and density of air respectively, and p,,, and p,, the corresponding
values for water. Express your answer in terms of these variables.
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2.

Consider a sphere of radius a moving with velocity U in unbounded fluid
which is at rest at infinity. Take spherical polar coordinates (7,0, ¢) with § = 0
parallel to U and the origin at the centre of the sphere. Neglecting inertia, the
axisymmetric flow generated by the sphere is given by

¢ D C D
U =2 —+—=]cosl, wuy=|——+ —|sind, uy=0.
r 3 r 3

(i) [5 marks|

Verify that this flow is incompressible. You may use the result that

L O(r*F,) 1 O(sinfFy) 1 O0F,
V'F_ﬁ or +rsin9 00 +rsin0 0¢

(ii) [5 marks]

Compute C' and D for a rigid sphere of radius a, clearly stating the bound-
ary conditions.

(iii) [5 marks|

The magnitude of the drag force on this sphere is 6raulU. Compute a
stokeslet velocity field representing a point force of magnitude F' acting at
the origin in the direction 6 = 0 using the result of (ii).

(iv) [5 marks]

With the assistance of clear diagrams, explain why a stokeslet could be used
to model a hovering negatively buoyant copepod. Give an example of one
limitation of this model.
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Consider a micro-organism which swims at steady velocity —U1i and is pro-
pelled by an inextensible flagellum of length L undergoing planar waving motion
with wave velocity Vi . At ¢t = 0 the position of the centreline of the flagellum is
given by the parametric equation:

R(s) =(X(s),Y(s)), 0<s<lL,

where s is arc length measured from one end.

Resistive force theory states that the force acting on an element of flagellum
of length ds moving with velocity —w is given by

Fr=Krw.tds, Fy= Kyw.nds,

where Fr and Fly are the components of force tangential and normal to the flagel-
lum respectively, and t and n are unit tangent and normal vectors respectively.

(1) [8 marks|

Show that —T', the total force on the flagellum in the i direction, is given
by

7 = (KT—KN)/OL(w.t)(t.i)ds+KN/OLW.ids.

You can use the identity w.i = (w.t)(t.i) + (w.n)(n.i).

(ii) [12 marks]
Consider an idealised shape defined by
X(s) = as,

where « is some constant such that 0 < a < 1. The velocity of a material
point on the flagellum relative to the fluid far away is —w, where

v
w=(U-V)i+—t.
«

Show that the swimming speed for zero thrust swimming (i.e. neglecting
the head) is given by

- yi=ad)i-1) Ky

Paper Code MATH 429 Page 4 of 8 CONTINUED



THE UNIVERSITY
of LIVERPOOL

4.
A bottom heavy spherical micro-organism is at position (z(t),y(t),0) in a
planar shear flow, u = yyX. The micro-organism swims at speed v with swimming
direction p = (sin, cos §,0) that satisfies the following vector equation:

dp 1 .. . 1
— = _[y— (3. “wA
o =353 — (PPl +gw AP,
where w is the vorticity of the flow.
(i) [11 marks]

Derive a set of differential equations satisfied by 6(t), z(¢) and y(t).

(i) [3 marks|

Carefully describe the 2 types of motion which depend on the relative mag-
nitudes of B and 7.

(iii) [6 marks]

Compute and sketch the trajectory of the cell swimming with steady ori-
entation 6 initially at (0,0). Mark the angle 6, on the sketch.

Paper Code MATH 429 Page 5 of 8 CONTINUED



THE UNIVERSITY
of LIVERPOOL

5.

(i) [6 marks]
Derive the Bernoulli theorem for steady irrotational flow, starting from
Euler’s equation of motion for inviscid flow:

Ju 1
— +uVu=—--Vp
ot p b
You can use the identity (V Au) Au=u.Vu— V(5u?).

(ii) [4 marks|
Consider the 2D irrotational flow given in cylindrical polar coordinates by
u = 5--ey. Compute the circulation around a circle centred at the origin.

(iii) [5 marks]
Explain how lift is generated by steady flow past a wing, with reference to
the Bernoulli theorem and the Kutta-Joukowski hypothesis.

(iv) [5 marks]

In still air, an albatross is observed to steadily glide at an angle « to the
horizontal with speed U. The weight of the bird is W. With the aid of force
diagrams, what thrust would be required for the bird to fly horizontally with
the same speed?
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For the Lighthill elongated body theory for a fish of length [ swimming at
steady speed U, take h(x,t) as the equation of the centreline, and w(z,t) as the
lateral velocity of the water:

w(x, t) = (Zh —i—U? = Dh.

The work done per unit time by periodic body motions can be written as

EL—/me—dx—/mw

where m(z) is the virtual mass per unit length.

(1) [7 marks|

Show that the average work done per unit time is given by

oh
< Ep>=[Um < w— >|4=,

ot
stating clearly any assumptlons you make. Average is defined in the stan-
dard way: < f >= 7 fo t)dt, where T is the time period of motion.

The average rate of increase in kinetic energy of the water surrounding the fish
is given by

!
1 1
< / D(Emw2)d:p >= [§Um < w? >|pm,
0

Consider the following fish undulation:

h(z,t) = Hsin(a(x — V1)).

(ii) [9 marks|

From energy considerations, show that the mean thrust exerted by the fish
on the water is given by

1
<T>= Z—lm(l)c»zzllﬂ(v2 - U?).
You may use the result that < cos?((a(z — Vt)) >= %

(iii) [4 marks]

If the viscous drag on the fish is 3U?, compute the swimming speed, U, of
the fish as a function of m(l), H and V.
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The non-dimensional equations for bioconvection can be written as:
D 811 ~ 2
= (E + u.Vu) = —Vp. — Rnz+ V~u, (1)
Vu = 0, (2)
0
8—7; = —V.(n(u+dz) — Vn). (3)
(i) [2 marks|

Explain whether you expect bioconvection to occur with reference to the
critical Rayleigh number, R..;.

(ii) [3 marks]

Write down suitable boundary conditions for n and u for rigid boundaries
at z =0 and z = —1.

(iii) [4 marks]
Show that the following equilibrium solution satisfies the governing equation
for cell concentration (equation 3) and boundary conditions.

u=0, neui=exp(dz).

(iv) [11 marks]

Consider a small 2D perturbation to equilibrium:

u =eu = 8_¢0_8_¢
e 0z oOx )’
n =

/
Neguil + €N

Linearise equations (1) and (3) to obtain a coupled pair of equations for
u'(z, z,t) and n'(z, 2, t). By eliminating the pressure term, derive a coupled
pair of linear differential equations for ¥ (z, z,t) and n'(x, z,t). You may
use the following results:

VAU = Vi,
VA (n'z) = _2—29,

V.(nu') = n(V.u') +u'.(Vn).
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