

1. (a) Four specimens of each of five brands of a synthetic wood veneer material were subjected to a friction test. A measure of wear (in appropriate units) was determined for each specimen, resulting in the following data.

Brand i	1	2	3	4	5
	2.3	2.2	2.2	2.4	2.3
	2.1	2.3	2.0	2.7	2.5
	2.4	2.4	1.9	2.6	2.3
	2.5	2.6	2.1	2.7	2.4
$\overline{\hspace{1cm}}$ Mean $\overline{y_{i\cdot}}$	2.325	2.375	2.050	2.600	2.375
Standard deviation s_i	0.171	0.171	0.129	0.141	0.096

Carry out an analysis of variance to test for differences in mean wear for the five brands and comment on your results.

[12 marks]

(b) Consider the one-way ANOVA model for three groups, and suppose that for i = 1, 2, 3, group i consists of n_i observations. Writing the model in the form

$$Y_{1j} = \mu + \alpha_1 + \epsilon_{1j}$$
 $(j = 1, 2, ..., n_1)$
 $Y_{2j} = \mu + \alpha_2 + \epsilon_{2j}$ $(j = 1, 2, ..., n_2)$
 $Y_{3j} = \mu - (\alpha_1 + \alpha_2) + \epsilon_{3j}$ $(j = 1, 2, ..., n_3)$

and considering this as a general linear model of the form $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, write down the components of the vector $\boldsymbol{\beta}$ and the design matrix X in this case.

Find a condition under which the first column of X is orthogonal to each of the other two columns of X. What implications does this have for parameter estimation? Write down the matrix X^TX in this case.

[8 marks]

2. (a) Consider the general linear model, with

$$Y = X\beta + \epsilon$$

where X is a known $n \times p$ matrix of rank p, β is a vector of p unknown parameters, and ϵ is a random vector whose components are independent Normal random variables, each having mean zero and variance σ^2 .

Show that the least squares estimator $\hat{\boldsymbol{\beta}}$ is unbiased for $\boldsymbol{\beta}$, and derive an expression for the variance of $\hat{\boldsymbol{\beta}}$.

You may assume without proof that for the general linear model, least squares

estimates are given by
$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \boldsymbol{Y}$$
.

[8 marks]

Write down an expression which may be used to estimate the unknown error variance σ^2 .

[2 marks]

(b) A general linear model of the form $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$ is analysed in SAS using the following program.

```
data small;
input x1 x2 x3 y;
cards;
1 1 1 7
2 3 4 13
2 -2 2 5
4 3 2 21
;
proc glm data=small;
model y=x1 x2 x3 /noint;
contrast 'Label1' x1 1 x2 -2 x3 -2;
run;
quit;
```

Question 2 continued overleaf

Write down the X matrix for this model and the observed response values y. Explain the meaning of the lines labelled (*) and (**) in the SAS program.

[6 marks]

Some of the output from this program is given below.

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
Label1	1	0.36765036	0.36765036	0.22	0.7217

		T for HO:	Pr > T	Std Error of
Parameter	Estimate	Parameter=0		Estimate
X1	4.059210526	8.25	0.0768	0.49232334
X2	1.618421053	4.53	0.1382	0.35696474
X1	0.059210526	0.12	0.9238	0.49232334

What conclusions can be drawn about the values of the parameters of the model?

[4 marks]

3. (a) Define the *rank* of a matrix. Describe briefly the importance of rank in the analysis of general linear models.

[4 marks]

(b) In a study of the relationship between the price of oranges and sales-percustomer, data were collected from 3 stores over 6 consecutive Saturdays. Sales-per-customer Y_{ij} and price x_{ij} (pence per lb) were recorded for each store i on each of the days j of the study, giving a total of 18 observations. The data may be modelled by the relationship

$$Y_{ij} = \alpha_i + \beta x_{ij} + \epsilon_{ij} \tag{\Omega}$$

for i = 1, 2, 3, j = 1, 2, 3, 4, 5, 6.

Fitting model (Ω) to the data using SAS, parameter estimates were found to be $\hat{\alpha}_1 = 41.93$, $\hat{\alpha}_2 = 45.89$, $\hat{\alpha}_3 = 42.39$, $\hat{\beta} = -0.668$, with residual Sum of Squares $SS_{\Omega} = 271.43$.

(i) To test the hypothesis that differences between the 3 stores have no effect upon sales, the following reduced model was also fitted to the data

$$Y_{ij} = \alpha + \beta x_{ij} + \epsilon_{ij} \tag{\omega_1}$$

Parameter estimates were $\hat{\alpha}=38.16,\ \hat{\beta}=-0.563,$ with residual Sum of Squares $SS_{\omega_1}=319.60.$

Test the hypothesis that differences between stores have no effect upon sales.

[6 marks]

(ii) Next, to see whether price affects sales, the following model was fitted.

$$Y_{ij} = \alpha_i + \epsilon_{ij} \tag{\omega_2}$$

Parameter estimates were $\hat{\alpha}_1 = 12.33$, $\hat{\alpha}_2 = 10.50$, $\hat{\alpha}_3 = 7.00$, with residual Sum of Squares $SS_{\omega_2} = 462.83$.

Test the hypothesis that price has no effect upon sales.

[6 marks]

(iii) Comment on your results. Which is the preferred model?

[3 marks]

For your preferred model, estimate the sales per customer of oranges in store 1 on a day when the price is 40 pence per lb.

[1 mark]

4. Three growth promoting methods i = 1, 2, 3 were applied to seeds from each of four varieties j = 1, 2, 3, 4 of turf grass, and 4 observations taken at each of the 3×4 possible factor combinations, giving 48 observations in total. Group mean yields $\overline{y_{ij}}$ are given below.

	Variety j	1	2	3	4
Method i					
1		21.9	22.9	24.8	25.6
2		11.4	16.0	15.6	11.6
3		18.9	20.3	18.0	14.8

(i) Give a graphical representation of the group means which shows the relative importance of the two main effects and the interaction between them, and comment on your plot.

[6 marks]

(ii) Complete and interpret the analysis of variance table for these data presented below.

Source	SS	df	MS	F
Method	825.7			
Variety	61.6			
Interaction	114.3			
Residual				
Total	1666.3			

[12 marks]

(iii) What further data might it be worthwhile to collect?

[2 marks]

5. A random variable Y with a single parameter θ belongs to the exponential family in canonical form if its probability mass function (or probability density function) can be written in the form

$$f_Y(y;\theta) = \exp\{yb(\theta) + c(\theta) + d(y)\}.$$

(a) If Y is a Normal random variable with unknown mean μ and known standard deviation $\sigma > 0$, so that

$$f_Y(y; \mu) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2\right\} \qquad (-\infty < y < \infty)$$

then show that Y belongs to the exponential family in canonical form.

[3 marks]

(b) Suppose that Y_1, Y_2, \ldots, Y_n are independent Normal random variables with means $\mu_1, \mu_2, \ldots, \mu_n$ and common (known) standard deviation σ . Write down the log-likelihood of $\boldsymbol{\mu} = (\mu_1, \mu_2, \ldots, \mu_n)$ in terms of the observed response values y_1, y_2, \ldots, y_n .

[2 marks]

Suppose now that the μ_i are given by

$$\mu_i = \boldsymbol{x}_i^T \boldsymbol{\beta}$$

for some unknown parameters $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)$ and known vectors of explanatory variables $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n$.

Write down the log-likelihood of β .

[2 marks]

Denoting by X the matrix with columns $\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n$, and assuming that X is of full rank p, show that the maximum likelihood estimates $\hat{\boldsymbol{\beta}}$ are given in terms of observed response values $\boldsymbol{y} = (y_1, y_2, \dots, y_n)^T$ by

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

[9 marks]

(c) Suppose now that Y is a Normal random variable with known mean μ and unknown standard deviation σ . Is it possible for the density $f_Y(y;\sigma)$ to be written as a member of the exponential family in canonical form? Explain your answer.

[4 marks]

6. In a five-year study of road traffic accidents, the number of accidents on a particular stretch of road was recorded for each consecutive six-month period. The data are given below.

Time period
$$i$$
 1 2 3 4 5 6 7 8 9 10
Number of accidents y_i 2 5 7 12 10 10 8 9 12 12

Assume that the numbers of accidents Y_1, Y_2, \ldots, Y_{10} are independent Poisson random variables with means $\mu_1, \mu_2, \ldots, \mu_{10}$.

(i) It is conjectured that the average number of accidents varies linearly over time, so that for i = 1, 2, ..., 10,

$$\mu_i = \alpha + \beta i \tag{*}$$

for unknown parameters α , β .

Fitting model (*) in SAS produced maximum likelihood estimates $\hat{\alpha} = 3.3063$, $\hat{\beta} = 0.9807$, with deviance D = 5.7244. Does model (*) provide a good fit to the data?

[4 marks]

(ii) To see whether there is any evidence of a change in mean accident levels over time, the model

$$\mu_i = \alpha \tag{**}$$

was also fitted to the data, giving $\hat{\alpha} = 8.7000$ with deviance D = 13.5293. Which of models (*) and (**) would be preferred for these data?

[4 marks]

(iii) As an alternative to linear variation, it is suggested that the mean number of accidents may vary exponentially with time. Thus we now consider the model

$$\mu_i = \exp\left\{\alpha + \beta i\right\} \tag{***}$$

In this case, we find maximum likelihood estimates are $\hat{\alpha} = 1.5917$, $\hat{\beta} = 0.0969$, with deviance D = 6.9409.

Question 6 continued overleaf

Again, we wish to test for evidence of a change in mean accident levels over time by comparing model (***) with model (***). Which of these two models should be preferred?

[4 marks]

(iv) We also want to decide whether a linear or exponential trend provides a better description of the data, by comparing models (*) and (* * *). Of these two models, which should be preferred?

[4 marks]

(v) Using your preferred model (amongst the three available), estimate the number of accidents expected to occur during the year following the end of the study.

[4 marks]

7. Suppose Y_1, Y_2, \ldots, Y_n are independent exponential random variables with means $\mu_1, \mu_2, \ldots, \mu_n > 0$, so that the density of Y_i is given by

$$f(y_i; \mu_i) = \frac{\exp\{-y_i/\mu_i\}}{\mu_i} \qquad (y_i \ge 0)$$

(i) Write down an expression for the log-likelihood of $\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_n)$ in terms of observed values y_1, y_2, \dots, y_n , and derive expressions for the maximum likelihood estimates $\hat{\mu}_1, \hat{\mu}_2, \dots, \hat{\mu}_n$.

[6 marks]

(ii) Suppose now that $\mu_i = \alpha i$ (i = 1, 2, ..., n) for some unknown parameter α . Show that the log-likelihood of α is given by

$$l(\alpha) = -n \ln(\alpha) - \frac{1}{\alpha} \sum_{i=1}^{n} \left(\frac{y_i}{i}\right) - \sum_{i=1}^{n} \ln(i)$$

and hence find an expression for the maximum likelihood estimate $\hat{\alpha}$.

[6 marks]

(iii) Find an expression for the deviance for comparing this model with the maximal model, simplifying your expression as far as possible.

[8 marks]