1. (i) Let v be a regular plane curve with parameter ¢. Explain briefly
the two equations 7/ = s'T and T = ks'U, where ' stands for d/dt. Write
down a formula for U’. Calculate v and prove that

v, v"]
'] [3

(ii)) Now let « be a unit speed curve and s a natural parameter on
it. The evolvent of o with the base value s = sy (a fixed constant) of the
parameter is the curve

where T, is the unit tangent to a.
Show that ¢ is regular unless either s = sq or k4(s) = 0.

Assume from now on that (s — sg)kqa(s) > 0. Show that T.(s) = —U,(s)
and U.(s) = Ty(s).

Find the curvature k. of the evolvent.

Recall the expression for the centre of curvature of an arbitrary plane
curve at a given point in terms of its curvature and unit normal. Find the
centre of curvature of the evolvent £ at &(s).

The curve §(s) = &(s) + rU.(s) is called the parallel to ¢ at distance 7.
Show that 0 is also an evolvent of the initial curve «, but with some other
base value s; of the parameter s. Find the relation between s;, sy and 7.
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2. (i) Let v: I — R? be a unit speed space curve. Define T, k, and
assuming that x # 0, define P, B and 7. Show that

P =—kT+71B and B =—-7P.

Prove that [, YY" = K27

(ii) Show that a helix v : R — R3, y(t) = £(cos4t,sin4t, 3t), is a unit
speed curve and calculate T(t), P(t), B(t), (t) and 7(t) for it.

3. Let X : U — R? be a surface patch. Define the term reqular patch
and the coefficients F, F', G of the first fundamental form for X.

Let X be a parametrisation
X(u,v) = (f(u) cosv, f(u)sinwv, u)

of the surface of revolution obtained by rotation of the graph = = f(z) of
a smooth function f about the z-axis. Calculate the coefficients of the first
fundamental form of this surface and show that the surface is regular if f is
never zero.

Consider a curve y(u) = X(u,v(u)), v € I C R, on our surface of
revolution. Show that cosine of the angle v at which the curve ~ intersects
a meridian v = const (oriented by the positive u direction) is given by the

formula
__VE
VvVE + Guv'?

Assume that the curve v meets all the meridians at the same angle a.
Show that the interval of v between two parallels u = vy and u = uy (ug < ug)

has length
L

COoS &
where L is the length of the part of any meridian bounded by the same
parallels.
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4. Define the coefficients e, f, g of the second fundamental form of a sur-
face patch X.

Let X : U — R? be the graph surface
X (u,v) = (u,v, h(u,v))

of a smooth function h defined on an open subset U of R2.
Show that this is a regular surface.

Find a unit normal N(u,v) to this surface and calculate the coefficients
of the first and second fundamental forms. Deduce an expression for the
Gaussian curvature of this surface (state without proof any general formula
you use for K).

In the case when h = u® — v® and U = R?, show the subdivision of the
(u,v)-plane into the sets of elliptic, hyperbolic and parabolic points of the
surface. What are the asymptotic directions at the point X (1, —1)?
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5. Consider the tangent developable
X(s,t) =7(s) +t7'(s), >0,

of a unit speed space curve v : I — R3, I C R. Assume that the curvature
k of ~y is never zero.

Show that

(i) this is a regular parametrised surface, and the binormal B(s) of 7
at y(s) can be taken for the unit normal of the surface at the point X(s, t);

(ii) the coefficients of the first fundamental form of X are
E =1+, F=1, G=1;
(iii) the coefficients of the second fundamental form of X are
e =17k, F=1, G=1;

(iv) the principal curvatures at the point X(s,t) are

-
kK1 =0 and Koy = —;
tK

(v) the principal curves on the surface are given by s = const (these
are the rulings of the developable) and s + ¢ = const.

MATH349 ) 8



6. (i) Consider a unit speed curve « on a surface M parametrised by a
regular injective mapping X : U — R3, U C R?. Define the standard vectors
T, N, U associated with « at the point «(s). Define the normal (sectional)
and geodesic curvatures k, and k4 of o at this point. In what case is « called
a geodesic?

(ii) Consider a surface M C R3 parametrised by
X(u,v) = (u, v, h(u,v)) where h(0,0) = h,(0,0) = h,(0,0) =0.

Let v be a (non-unit speed) curve on M such that y(0) = (0,0,0) and
v'(0) = (1,0,0). Show that at the origin

(a) the normal curvature of 7 is equal, up to sign, to the ordinary
curvature of the section y = 0 of M,

(b) the geodesic curvature of «y is equal, up to sign, to the ordinary
curvature of its orthogonal projection to the (z,y)-plane.

(iii) Formulate Gauss’ Theorem expressing a sectional curvature at a
point of a surface in terms of the principal curvatures. Define the mean
curvature H(p) at a point p of a surface. Assuming K (p) # 0, show that
H(p) = 0 if and only if the asymptotic directions at p are perpendicular to
each other.
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7. Explain the meaning of the term Riemannian surface.

Consider a Riemannian surface with coordinates u,v and the quadratic
form having coefficients £ = 1, FF = A(u), G = B(v) (we assume that
functions A and B on the surface are such that B(v) > A%(u)).

Calculate the Christoffel symbols and the coefficients 3F using the formu-
lae below.

Write out the Gauss-Weingarten equations for such a surface. Using
these compute (X,y), and (Xy,),. Comparing the coefficients of X, in the
expressions obtained, deduce that the Gaussian curvature of the surface is

A'B’

SRR o

Deduce that K is identically zero if B is a constant function.

Let v : I — R3 be a unit speed curve, and ¢ a constant vector. Define
X :IxR— R3by X(u,v) = y(u) + ve. Deduce from the above that the
Gaussian curvature of X (at regular points) vanishes.

FORMULAE FOR QUESTION 7:

Christoffel symbols:

Mh T ThY_(E F\ [ EJ2 EJ/2 F—G.,2 |
r2, T2, T2, F G Fu—E,/2 GuJ2  Gy/2

The SE:
< ¥ ) ( >_1 ( e )
e F G fg9)
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The Gauss-Weingarten equations:
Xy = M Xy + T4 X, +eN
Xy = N, X, +T2,X, + fN
Xy = P%QXu + F%QXv + gN
Nv = ﬁQlXu + ﬁng
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