1. Give the definition of the Fourier transform of an integrable function $f: \mathbf{R} \to \mathbf{C}$. Find the Fourier transform $\hat{f}(\xi)$ of

$$f(x) = \frac{1}{(x^2 + 9)^2}.$$

[Hint: You will need to consider separately the cases $\xi \geq 0$ and $\xi \leq 0$, and you can use a semicircular contour in the lower half-plane if $\xi \geq 0$, and in the upper half-plane if $\xi \leq 0$. You need only do one of these cases if you can use the fact that f is real-valued to show that $\hat{f}(-\xi) = \hat{f}(\xi)$.]

[20 marks]

2. (i) Determine whether the following functions are integrable on the given domains, naming any theorems that you use.

a)
$$f(x) = \frac{1}{x}$$
 on $[1, \infty)$.
b)
$$f(x) = \frac{1}{(|x|+1)^2}$$
 on \mathbf{R} .
c) $f(x) = \frac{\sin(x)}{x}$ on $(0, 1)$.

(ii) Use a semicircular "beehive" contour (shown below) to evaluate

[20 marks]

3. Consider the function defined by

$$g(x) = -x + \pi$$

for $x \in [0, 2\pi)$, and extended 2π -periodically to a function on **R**.

As usual, let $s_n(y)$ be defined for y not an integer multiple of 2π by

$$s_n(y) = \frac{1}{2\pi} \frac{\sin((n + \frac{1}{2})y)}{\sin(\frac{1}{2}y)},$$

and let

$$S_n(g)(x) = \int_{x-\pi}^{x+\pi} g(x-y)s_n(y)dy.$$

[This is the same as the usual formula, because the integrand is 2π -periodic.]

(i) Show that

$$S_n(g)(x) = -x + \int_{x-\pi}^{x+\pi} y s_n(y) dy + \pi \left(\int_{x-\pi}^x - \int_x^{x+\pi} \right) s_n(y) dy.$$

You may assume that the integral of s_n over any interval of length 2π is 1.

The Fourier Series Theorem says that $\lim_{n\to\infty} S_n(g)(x)$ exists for all x and gives a value for the limit: state this limit for this g and for any $x\in(0,\pi)$.

(ii) Let

$$T_n(g)(x) = \left(\int_{x-\pi}^x - \int_x^{x+\pi}\right) \frac{\sin((n+\frac{1}{2})y)}{y} dy.$$

Show that if $x_n = \pi/(n + \frac{1}{2})$ then

$$\lim_{n \to \infty} T_n(g)(x_n) = 2 \int_0^{\pi} \frac{\sin y}{y} dy.$$

Assuming (as is true) that

$$\lim_{n \to \infty} (S_n(g)(x) - T_n(g)(x)) = 0$$

uniformly in x, and that

$$\int_0^\pi \frac{\sin y}{y} dy > \frac{\pi}{2},$$

explain why the convergence of $S_n(g)(x)$ to its limit cannot be uniform on $(0,\pi)$.

4. Suppose that

$$u = u(x,t) : [0,2\pi] \times [0,\infty) \to \mathbf{C}$$

is a continuous function, and that the partial derivatives u_t , u_x , u_{xx} exist on $(0, 2\pi) \times (0, \infty)$, with u_x , u_{xx} extending continuously to $[0, 2\pi] \times [0, \infty)$. Suppose also that

$$u(0,t) = u(2\pi,t) = u_x(0,t) = u_x(2\pi,t) = 0$$

for all $t \geq 0$. Consider the equation

$$u_t = u_{rr}, t > 0, 0 < x < 2\pi,$$
 (1)

with initial condition

$$u(x,0) = f(x). (2)$$

As usual, define the Fourier coefficients

$$\hat{u}(n,t) = \int_0^{2\pi} u(x,t)e^{-inx}dx,$$

and define similarly the Fourier coefficients of u_x , u_{xx} , u_t .

(i) Find formulae for $\hat{u}_x(n,t)$ and $\hat{u}_{xx}(n,t)$ in terms of $\hat{u}(n,t)$. Derive from (1) and (2) a differential equation involving $\hat{u}(n,t)$ and $(d/dt)\hat{u}(n,t)$, explaining any theory that you use. Hence show that the Fourier series of u(x,t) with respect to x is given by

$$\sum_{n=-\infty}^{\infty} \frac{1}{2\pi} e^{-n^2 t} \hat{f}(n) e^{inx},$$

where $\hat{f}(n)$ are the Fourier coefficients of f(x).

(ii) Now suppose that

$$\sum_{n=-\infty}^{\infty} |\hat{f}(n)| < +\infty.$$

Show that for some constant C,

$$\left| u(x,t) - \frac{1}{2\pi} \hat{f}(0) \right| \le Ce^{-t},$$

and also that, for all integers N,

$$|u(x,t) - f(x)| \le CN^2 t \sum_{n=-N}^{N} |\hat{f}(n)| + C \sum_{|n|>N} |\hat{f}(n)|.$$
 (3)

[Hint: You may assume that, for all real $y \ge 0$, $|e^{-y} - 1| \le \text{Max}(1, y)$.]

Deduce from (3) that

$$\lim_{t \to 0} u(x, t) = f(x).$$

[20 marks]

5. (i) Let $\hat{f}(\xi)$ be the Fourier transform of $f(x) = e^{-x^2/2}$. Using the rectangular contour drawn below, show that

$$\lim_{R \to \infty} \int_{\gamma_3(R)} e^{-z^2/2} dz = -e^{-\xi^2/2} \hat{f}(\xi)$$

and

$$\lim_{R \to \infty} \int_{\gamma_2(R)} e^{-z^2/2} dz = \lim_{R \to \infty} \int_{\gamma_4(R)} e^{-z^2/2} dz = 0.$$

Hence, or otherwise, calculate $\hat{f}(\xi)$. You may assume that $\hat{f}(-\xi) = \hat{f}(\xi)$, and that

$$\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}.$$

In what follows, you may assume that, for any real number a,

$$|e^{-ia} - 1 + ia| \le 3\operatorname{Min}(|a|, |a|^2).$$

(ii) Now let $f: \mathbf{R} \to \mathbf{C}$ be a function such that $f, g \in L^1(\mathbf{R})$, where g(x) = xf(x). Show that

$$\left| \frac{\hat{f}(\xi+h) - \hat{f}(\xi)}{h} + i\hat{g}(\xi) \right| \le 3 \int_{-\infty}^{\infty} \min(|x|, x^2|h|) |f(x)| dx.$$

By breaking up the integral on the right into the pieces $|x| \le |h|^{-1/3}$ and $|x| \ge |h|^{-1/3}$, or otherwise, show that \hat{f} is differentiable and

$$\frac{d}{d\xi}\hat{f}(\xi) = -i\hat{g}(\xi).$$

(iii) Hence, or otherwise, find the Fourier transforms of the functions $xe^{-x^2/2}$ and $x^2e^{-x^2/2}$.

[20 marks]

- **6.** (i) State Tonelli's Theorem about double integrals.
 - (ii) Let $f, g, \widehat{g} \in L^1(\mathbf{R})$. Show that

$$(\widehat{f}\widehat{g})^{\vee} = f * (\widehat{g})^{\vee}.$$

[Hint: Try writing $(\widehat{f}\widehat{g})^{\vee}$ as a double integral involving f and \widehat{g} .]

(iii) Now let f be continuous, bounded and integrable. For t > 0, let

$$g_t(y) = \frac{1}{\sqrt{2\pi t}} e^{-y^2/2t}.$$

Show that

$$\int_{-\infty}^{\infty} g_t(y)dy = 1$$

for all t > 0, and that, for all $\delta > 0$,

$$\lim_{t \to 0} \int_{|y| \ge \delta} g_t(y) dy = 0.$$

[Hint: You may assume that

$$\int_{-\infty}^{\infty} g_1(y)dy = 1.$$

(iv) Hence, using (ii), show that

$$f(x) - \frac{(\widehat{f}\widehat{g}_t)^{\vee}(x)}{2\pi} = \int_{-\infty}^{\infty} (f(x) - f(x - y))g_t(y)dy$$

and

$$f(x) = \lim_{t \to 0} \frac{(\widehat{f}\widehat{g}_t)^{\vee}(x)}{2\pi}.$$

[Hint: You may assume that $(\hat{g}_t)^{\vee} = 2\pi g_t$. You are not required to work out \hat{g}_t or $(\hat{g}_t)^{\vee}$.]

- 7. Let $f \in L^1(0, \infty)$.
- (i) Define the Laplace transform $\mathcal{L}(f):\{z\in\mathbf{C}:\mathrm{Re}(z)>0\}\to\mathbf{C}$. Show that $\mathcal{L}(f)$ is bounded. Show also that

$$\lim_{\mathrm{Re}(z)\to+\infty}\mathcal{L}(f)(z)=0.$$

[*Hint*: You may need to use the Dominated Convergence Theorem for a family of functions parametrised by the positive reals.]

Assuming (as is true) that for any A > 0,

$$\lim_{\mathrm{Im}(z)\to\infty}\mathcal{L}(f)(z)=0$$

uniformly for $0 < \text{Re}(z) \le A$, show that

$$\lim_{z \to \infty, \operatorname{Re}(z) > 0} \mathcal{L}(f)(z) = 0.$$

- (ii) Determine which of the following can be the Laplace transform of a function in $L^1(0,\infty)$, giving brief reasons. For any which can, find $f_i \in L^1(0,\infty)$ such that $F_i = \mathcal{L}(f_i)$.
 - a) $F_1(z) = \frac{1}{|z+1|}$.
 - b) $F_2(z) = e^{-z^2}$.
 - c) $F_3(z) = \frac{1}{z+1}$.
 - d) $F_4(z) = \frac{1}{z^2 1}$.

8. In this question, you may assume that the function

$$\frac{1}{\sqrt{\pi}}e^{-x^2/4}$$

has integral 1 on $(-\infty, \infty)$, and has Fourier transform $e^{-\xi^2}$.

(i) Define the mean and the variance of a probability measure. Now let

$$f(x) = \frac{1}{2}e^{-|x|}.$$

Check that the integral of f over \mathbf{R} is 1. Compute the mean and variance for the probability measure μ with density function f.

(ii) For μ as in (i), compute the Fourier transform $\hat{\mu}$. Now let $(*)^n \mu$ denote the *n*-fold convolution of μ , and let μ_n be the measure on **R** defined by

$$\mu_n(A) = \int_{-\infty}^{\infty} \chi_A(x/\sqrt{n}) d(*^n \mu).$$

Show that

$$\hat{\mu}_n(\xi) = (\hat{\mu}(\xi/\sqrt{n}))^n.$$

Hence, or otherwise, show that for any fixed ξ

$$\lim_{n\to\infty} \ln \hat{\mu}_n(\xi) = -\xi^2.$$

Relate this to what the Central limit Theorem says about

$$\lim_{n\to\infty} \int g(x)d\mu_n(x)$$

for any bounded measurable function g on \mathbf{R} .