- a) Define the degree of a circle map f, and justify why your definition makes sense.
- b) In each of the following, find a homotopy between f_1 and a suitable f_0 of the form $f_0(z) = \pm z^d$, and hence determine $\deg(f_1)$. In each case, you should justify your choice of homotopy.

(i)
$$f_1(z) = \frac{3z+i}{3-iz}$$

(ii) $f_1(z) = \frac{z^3 - 4z^2 + 2}{|z^3 - 4z^2 + 2|}$ [20 marks]

- **2.** Let f be a circle map of degree d > 1, \tilde{f} a lift of f, $g_1(x) = \tilde{f}(x) x$ and $g_2(x) = \tilde{f}^2(x) x$.
- (i) Show that if $g_1(x) = k \in \mathbb{Z}$ then $e^{2\pi i x}$ is a fixed point of f. What can you say if $g_2(x) \in \mathbb{Z}$?
 - (ii) Show that if $g_1(x) = k \in \mathbb{Z}$ then $g_2(x) = k(d+1)$.

[You may assume $\tilde{f}(x+k) = \tilde{f}(x) + k \deg(f)$ for any $k \in \mathbb{Z}$.]

- (iii) Compute $g_2(x+1) g_2(x)$.
- (iv) Let x_0 be a point such that $0 < g_2(x_0) < 1$. Sketch a possible graph of $g_2(x)$ for $x_0 \le x \le x_0 + 1$
- (v) Find a lower bound for the number of solutions of $g_2(x) \in \mathbb{Z}$ for $x \in [x_0, x_0 + 1]$ naming any theorem that you use.

[You may want to write x_n for a solution of $g_2(x) = n$.]

- (vi) Of your solutions to $g_2(x) = n$, how many can be solutions to $g_1(x) \in \mathbb{Z}$? Find a lower bound for the number of solutions of $g_2(x) \in \mathbb{Z}$ with $x_0 \leq x \leq x_0 + 1$ which are *not* solutions of $g_1(x) \in \mathbb{Z}$.
- (vii) Show that f has at least d(d-1) points of least period 2. [20 marks]

- a) State a theorem giving conditions under which a circle map f is semiconjugate to the circle map $z \mapsto z^d$ via a degree-one semiconjugacy. State a condition under which there is a conjugacy from f to $z \mapsto z^d$.
 - b) For $a \in \mathbb{R}$, let $f_a: S^1 \to S^1$ be the circle map with lift

$$\tilde{f}_a(x) = 2x - \frac{1}{2} + \frac{a}{2\pi}\sin(2\pi x).$$

- (i) Give a value of d such that f_a is semiconjugate via a degree-one map to $z\mapsto z^d$.
 - (ii) Show that if |a| < 1, then there is a conjugacy from f_a to $z \mapsto z^d$.
- (iii) Suppose a > 1. Show that \tilde{f}_a has a fixed point in (0, 1/2). Hence or otherwise deduce that f_a is not conjugate to any map $z \mapsto z^d$, stating clearly any properties of conjugate maps that you use. [20 marks]

4.

- a) Define the rotation number for a lift \tilde{f} of a degree-one monotone circle map f. State any results which are needed for your definition to make sense.
 - b) For $a \in \mathbb{R}$, let $f_a: S^1 \to S^1$ be the circle map with lift

$$\tilde{f}_a(x) = x + a + \frac{1}{6\pi} \sin^3(2\pi x).$$

- (i) Show that \tilde{f}_a is strictly increasing.
- (ii) Find a number δ such that \tilde{f}_a has a fixed point if and only if $|a| \leq \delta$.
 - (iii) Compute $\rho(\tilde{f}_a)$ for $a = 0, \delta, \frac{1}{2}, 1 \delta$ and 1.
 - (iv) Sketch a graph of $\rho(\tilde{f}_a)$ for $0 \le a \le 1$.
- (v) What can you say about the set of values of a for which $\rho(\tilde{f}_a) = \frac{1}{3}$? Justify your answer. [20 marks]

5.

- a) Let f be any map. Define a wandering set of f and the set of nonwandering points of f.
- b) Let f_a be the circle map with lift $\tilde{f}_a(x) = x + a + \frac{1}{2\pi}\sin(2\pi x)$, which is strictly increasing.
 - (i) Sketch the graph of \tilde{f}_0 .
- (ii) Show that if $0 < x < \frac{1}{2}$, the interval $(x, \tilde{f}_0(x))$ is a wandering set of f_0 , and if $\frac{1}{2} < x < 1$, the interval $(\tilde{f}_0(x), x)$ is a wandering set of f_0 .
- (iii) Show that if a is such that $\rho(\tilde{f}_a)$ is irrational, the nonwandering set of f_a is the circle. You should state clearly, but need not prove, any results which you use in your answer. [20 marks]

6. Let $f:[0,3] \to [0,3]$ be given by

$$f(x) = \begin{cases} x+1 & \text{if } 0 \le x \le 2\\ 9-3x & \text{if } 2 < x \le 3 \end{cases}$$

Let $I_1 = [0, 1], I_2 = [1, 2] \text{ and } I_3 = [2, 3].$

- (i) Find $f(I_n)$ for n=1,2,3 and hence write down the shift Σ giving the itineraries of f and the transition matrix of this shift.
- (ii) Compute the number of periodic orbits of period n for $n=1,\ldots,6$.
 - (iii) Compute the periodic orbits of period 4. [20 marks]

- a) Define the pattern of a periodic orbit of an interval map.
- b) What does it mean for a periodic orbit of an interval map to *force* another?
- c) For each of the three parts below, give an example of a pattern satisfying the conditions, or explain why such an orbit does not exist.
- (i) A periodic orbit of period 6 which forces all even periods and period 1.
 - (ii) A periodic orbit of period 5 which forces orbits of all periods.
- (iii) A periodic orbit of period 9 which forces all periods except 3 and 7. [20 marks]

8.

- a) Define the kneading invariant of a unimodal map f of [a, b] with critical point c.
- b) Show how to order the itineraries $s^{\pm}(x)$ of points x under f such that if $s^{+}(x) < s^{-}(y)$ if x < y.
- c) State a condition under which k is the kneading invariant of a unimodal map, and determine which of the following sequences can be a kneading invariant:
 - (i) $k_1 = 1001\overline{10}$
 - (ii) $k_2 = 10010100\overline{1}$
 - (iii) $k_3 = \overline{10010}$
- d) Order the points of the periodic orbit with itinerary $\overline{100111}$ on the real line. For the sequences above which are kneading sequences of a unimodal map f, determine whether f has a periodic orbit with the given itinerary. [20 marks]