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Solutions for 344 exam

(Z) (ﬁ) ~ Ba— bc)l:i:(b —o)!

al(a —¢)!
~ da—0la—b)ib - o)

=620

Combinatorial argument: suppose given a people. We show that the two sides of the given equality
both count the number of ways to form a committee of b of them and a subcommittee of ¢ of those. On
the one hand, there are (‘;) ways to make the committee, and (';) ways to choose ¢ of its members as the
subcommittee. On the other hand, we could choose the subcommittee first, in (‘Cl) ways, and the b — ¢
members of the committee who are not on the subcommittee from the remaining a — ¢ people: that is,
in ($7¢) ways. [lecture] [4 marks]

Algebraic manipulation: consider the equality (1 + z)?™ = (1 + z)™(1 + z)". Comparing coefficients of
2™ on both sides, we get (>*) = 0 (%) (,”,)- But (?) =n!/@@!(n —4)!) = (™), so this is the desired
equality. Combinatorial argument: suppose given n men and n women. We show that the two sides
both count the number of ways to choose n of them. On the one hand, we could ignore the distinction
and simply choose n of the people. This can be done in (2;‘) ways. On the other hand, we could
maintain the distinction: we choose n women and 0 men, or n — 1 women and 1 man, etc., or 0 women
and n men. Thus the total is ;o (7) (,”;), which is equal to 37 ((7))? as in the previous solution.
[homework] [4 marks]

Let Sy be the set of ways to choose 13 cards including 3 diamonds, Sy the set of ways that include 4
hearts, and S3 the set of ways including 5 spades. Then, by the principle of inclusion-exclusion, the
desired number is

Algebraic manipulation:

[S1 US2USs| = |S1| + |S2| + |Ss] — |S1 N Sa| —|S2 N Ss| — S5 N S1| +[S1 N S2 N Ss).

Now, |S1| is the number of ways to choose 3 diamonds and 10 non-diamonds, so it is (%) (37). Similarly
152 = (') (%)) and |Ss] = (*?)(%)). On the other hand, |S; N S| is the number of ways to choose
3 diamonds, 4 hearts, and 6 black cards, so it is () (') (%), etc., and likewise [S1 N Sz N S3| =

3) 4] e
(133) (143) (153) (113). The answer is therefore

13\ /39 13\ /39 13\ /39 13\ [13\ (/26
(3) (o) = (D 5)+ () () - () (5) (5)
13\ [13\ (/26 13\ [13)\ /26 13\ [13)\ [13)\ /13
() 3) ) -()E) @) -G EE)E)

(It is not necessary to simplify this in any way.) [lecture and homework] [6 marks]

This word has 2 N’s, 3 D’s, 3 E’s, and two unique letters, so the number of ways is (3,3’120’1’1) =
10!/(3!312!1111!). First we find the number of rearrangements not including NN: we may think of NN as
a single letter, so the number of ways including NN is 9!/(3!3!) (ignoring 1! = 1 in the denominator),
and the number of rearrangements not including it is 10!/(3!3!2!) —9!/(3!3!). Now, for EE, the simplest
way is the following. The other 7 letters can be arranged in 7!/(3!2!111!) ways. Then there are 8
positions between and around the other 7 letters, and we get arrangements with nonadjacent E’s by
putting them in distinct positions, which can be done in (g) ways. So the answer is (g) (37;171). [similar
to lecture and homework] [6 marks, 2 each]

For 1 <i<b,let n; = Z;Zl myp, and let p; = n; + ¢. Then all the n; and p; are positive integers less
than or equal to a + ¢, and there are 2b of them, so by the pigeonhole principle two of them must be
equal. Because all of the m; are positive, it is not possible for two of the n; or two of the p; to be equal,

so we must have n; = p; for some ¢,j. But then, by definition, we have ¢ = n; —n; = EZ:]'H my,.
[homework] [5 marks]
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Dissect the square into four squares of side length 1/2 by drawing the lines that join the midpoints of
opposite sides. By the pigeonhole principle, two of the points must lie in or on the boundary of the same
square. It is clear that the distance between two points in or on a square is no greater than the length
of the diagonal, so the distance between those two points is at most 1/v/2 (Pythagorean theorem). On
the other hand, if we choose the five points to be the four corners and the centre, the minimum distance
is exactly 1/+/2. [lecture] [6 marks]

T has 128 subsets, and the possible sums range from 0 to 19-7 = 133. If there is a subset with sum 127
or greater, then the smallest element of 7" must be at least 10, so the 127 sums of nonempty subsets are
in the interval [10,133], which contains only 124 integers, so two of them must be equal. If not, then
the 128 sums are all in the range [0,126], and again two of them are equal. (22 is nowhere near best
possible, of course, but it seems difficult to determine what is.) [similar to lecture] [9 marks]

Hall’s theorem says that if S and T are finite sets of the same size n and each element of S can be
matched to some elements of T', then it is possible to match every element of S to an element of T if
and only if, for every subset R of size k of S, the total number of elements of 7' that can be matched
to at least one element of R is at least k. More generally, if elements of S may be paired with multiple
elements of T', the theorem states that a matching exists if and only if, for every subset R of S, the total
number of elements of 7' that can be matched to at least one element of R is at least the total number
of matches required. [lecture] [4 marks]

If we apply the standard algorithm, we might assign successively 1 to A4, 4 to B, 2to C, 5 to D, 6 to
E, 3 to F, and then notice that G and H cannot be assigned any task. But G or H could do 1, 5,6,
which are being done by A, D, E. These people can do 1,3,5,6, some of which could be done by B or
F', who can do 7 or 8. So we could take 6 from E and give it to G, then take 3 from F' and give it to E,
and then assign task 8 to F'. Thus seven tasks can be assigned. But if we attempt to give H a task, we
notice that H can do 1 and 5, which are being done by A and D, who can do 1, 3,5, 6, which are done
by A, D, E,G, and there the process stops. So A, D, E,G, H can do only four tasks between them, and
the assignment is not possible. (Other correct answers are possible.) [similar to lecture and homework]
[8 marks]

We create new people B, By replacing B, both of whom can do tasks 1,4,7,8. Starting with the
assignment A1, B14,C2, D5, E3, F8 G6 from the previous paragraph, we see that By can immediately
be assigned task 7, solving the problem. [similar to lecture and homework] [3 marks]

Again, let us start with the assignments of the previous part: Al, B4, B27,C2,D5,E3, F8 (having
deleted G). Now H can do 1,5, which are done by A, D, who can do 1,3,5,6. So we want to give task
6 to D, which frees task 5 to be assigned to H. [similar to lecture and homework] [5 marks]

A stable matching is a permutation 7 of {1,2, 3,4} such that there do not exist i,j € {1,2, 3,4} such
that j is higher on z;’s preference list than 7 (i) and i is higher on y;’s preference list than 7 1(j). (It
is acceptable to use more words and fewer symbols in the explanation.) [lecture] [2 marks]

Using the standard algorithm, we have the following steps, with tentative assignments as shown:
Proposal Status

(LL'l,y3) 3...
(LL'Q,yQ) 32..
(2L'3,y2) 3.2.
(z2,41) 312.
(z4,y3) 123
(xl,yg) 21.3
(z3,94) 2143

and a stable matching is achieved: (z1,y2), (2,91), (3,Y4), (24,y3). [lecture and homework] [4 marks]
Similarly, we have the following steps:
Proposal Status

(yl,ml) 1...
(y2,x4) 14..
(y3,$2) 142.
(ys,z1) 421
(y1,z3) 3421
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which produces the stable matching (z1,y4), (z2,¥3), (z3,y1), (z4,y2). [lecture and homework] [4 marks]
To set up this problem, we first remove x4 and y;. We then remove y; from the preference list of z; if
x; prefers y; to y; and y; prefers z; to z4; then we remove x; from the preference list of y; if y; prefers
x4 to xp, and x4 prefers y; to y;. In particular, this means we remove z; and x3 from y3’s list. Then we
introduce an imaginary student ¢ and an imaginary residency yo, such that o is at the bottom of the
list for all of the y; and yq is at the bottom for all the z;, and then we add the deleted x; and z3 to the
end of y3’s list. A solution of the original problem exists if and only if all solutions of the new problem
have zy matched with yg, if and only if one solution has this property. The preference lists might now
read:

0 2 3 40 012 30
1 3 2 40 213 20
2 2 3 40 3 2 031
3 2 430 4 1 3 2 0

Again, applying our standard solution method, we would have successively:
Proposal Status

(.’IJ(), yz) 2.
($17y3) 23..
(T2, Y2) -32.
(0, Y3) 3.2.
(xl,yg) 32..
(»’L‘2;y3) .23.
(.Z'(), y4) 423.
(1’3, y2) 423.
(1’3, y4) 234
(.’170, yo) 0234

Thus there is such a stable matching, namely (z1,y2), (¥2,93), (£3,¥4), (24,¥1). [similar to lecture and

homework] [6 marks]
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There is no such matching. We have already found that in the student-pessimal solution x4 is paired
with y2. But x4 prefers ys to y4, so it is not possible to find a stable matching where x4 is paired with
ys. (Alternatively, the method of 4(ii)(a) could be applied, or one could use the theorem that if there is
a stable matching in which z; and y; are matched despite each being the other’s last choice, then this
is true of all stable matchings.) [similar to lecture and homework] [4 marks]

Given a board consisting of some of the squares of an m X n rectangle, the rook polynomial is the
polynomial 3 rxt*, where 7 is the number of ways to place k nonattacking rooks on the board. It is
related to the rook polynomial of the complementary board by the formula

k
e =Y (=1 emjn—jhiTs;
=0
where 7y, is the kth coeflicient of the complementary board and ¢; 5, is the number of ways to place ¢
nonattacking rooks on an entire r x s board, which is

rls!
(r=t)!(s=t)t!"

[lecture] [6 marks]
We use the formula given above. The complementary board is
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its rook polynomial is the product of those of

L] and %E,

so (1+)(1+ 3t +12) = 1 + 4t + 4t> + t3. Using the formula above to determine the rook polynomial of
the complementary board, we find

To = cCq44,0 =1

T1=c44,1 —4c330 =12

To =c44,2 —4c331 +4c220=72—-36+4=40

T3 = C4,4,3 — 403’3,2 + 402,2,1 —C1,1,0 = 96 —-72+16—-1=239
Ty =cCsaa—4c333+4c222 —C11,1=24-244+8—-1=71.

Therefore the answer is 1 + 12t + 40t + 39¢® + 7t*. [similar to homework] [8 marks]
This question amounts to determining the coefficient of #> in the rook polynomial of the board

I
(] W L] [
Nl NN
NN
O 0O 44

The complementary board has rook polynomial (1 + 3t + 2)(1 + 2t)(1 +t) = 1 + 6t + 12¢2 + 9¢3 + 2¢*.
So by the formula given before, the desired number is

C5,5,5 — 604’4,4 + 1203,3’3 - 9C2’2’2 + 2C1’1,1 =120— 144 + 72 — 18 + 2 =32.

[similar to lecture and homework] [6 marks]
Let f(t) = Y a;t!. Then f(t)(4t> — 4t + 1) = ao + (a1 — 4ag)t = 2 — 6t. It follows that f(t) =
(2 — 2t)/(4t? — 4t + 1). Now, 4t2 — 4t + 1 = (1 — 2t)%, so we write f(t) = —1/(1 — 2t)2 + 3/(1 — 2t).
Each of these has a known expansion: 1/(1 — 2t) = Y 2i% and 1/(1 — 2t)2 = Y 2i(i + 1)t'. So
f(t) =242 —4)t!, and the explicit formula is a; = 2¢(2 — 4). [similar to lecture] [4 marks]
From the first equation we have b; = a;4+1 — 2a; and b;_1 = a; — 2a;_1. Substituting these into the
second equation, we get

ait1 — 2a; = a;—1 + 2a; — 4a;1,

which rearranges to a;1; = 4a;—3a;_;. Noting that a; = 2-1—1 = 1 we see, as before, that f(t) = " a;t*
has the property that f(¢)(3t> — 4t + 1) = 1 — 3¢, or in other words f(t) = 1/(1 —t). Thus in fact
a; = 1 for all 4. (It is acceptable to notice this and prove it directly by induction.) [similar to lecture
and homework] [4 marks]

Again letting f(t) = 3 ait’, we have f(t)(1 —3t) = 1+ > " 2% = 1/(1 — 2t). Thus f(t) = 1/(1 -
2t)(1—3t) = 3/(1—3t) —2/(1—2t), so that a; = 3*+1 —2¢+1 for all i. [similar to lecture and homework]
[6 marks]

We derive a recurrence relation for a; by expanding the determinant along the top row. The determinant
of the 1,1 minor is a;_1; that of the 1,2 minor is —a;_», as is seen by expanding that minor along the
first column. By basic properties of determinants it follows that a; = 2a;_1 + a;—2. One checks directly
that a; = 2, so as before we have f(t)(t> + 2t — 1) = —1 and f(t) = —1/(t> + 2t — 1). For the explicit
formula, let & = 14 +/2 and 8 = 1 — /2 be the roots of t> — 2t — 1. Then the explicit formula will be
a; = ca® + dB? for some constants ¢,d. We have ¢+ d = 1 and ca + dB = 2, so that ca + (1 —¢)3 = 2,
orc=(2-08)/(a—-pB)=(2++v?2)/4. Thus d = (2 — /2)/4. [similar to lecture] [7 marks]

The generating functions are respectively:

(a) th’ = Hz\j(l +t7),

(b) H4h 1_1—)527



(¢) TI,(1 + &+ ¢2 4 ¢39),
(No work need be shown for any of these.) [lecture] [3 marks each]
To see that the function in (b) is equal to that in (a), start by cancelling [, 1 from both sides. We

must then prove that (1%2)(17;6)(1%10).“ = (1 +#3)(1 +t*).... Substituting u = 2, we must prove that

[lop; =257 = [11 + v’ But 1+ 4’ = (1 —wu?)/(1 - %), and in [] 11’_’5 we may cancel all terms with even
exponent from the denominator to get Hz,ﬂ. = as desired. Next, to see that the function in (b) is equal

to that in (c), simply multiply numerator and denominator of (b) by [],; (1 —#*). This gives [], %, and

that is certainly equal to the function in (c). [lecture or homework] [7 marks for showing that any two of

them are equal; 11 for showing that all three are]
8i. Newton’s identities say the following: let x1,...,z, be any numbers. Let r; be the sum of all products
of k distinct z;, where 1o = 1 and r, = 0if k > n; let s = >} z¥. Then, for all nonnegative integers

m, we have
m

mrm = (=17 s, ;.
1

[4 marks]

For these numbers, we have s; = 3,82 = 5,83 = 7, and we must determine ry,75,73, 54, 5. Indeed,
r1 = s1 = 3. By Newton’s identities above, we have 2ry = s371 — sarg, which 7, = (9 —5)/2 = 2. For r3, we
get 3r3 = s172 — saT1 + 8370, S0 73 = (6 — 15+ 7)/3 = —2/3. Therefore the polynomial is z® — 3z + 2z — 2/3.
Then, clearly r4 = r5 = 0, so again applying Newton’s identities we get 0 = s1r3 — Sare + s3r1 — S47¢, SO
84 =—2-104+21=9, and 0 = 5174 — $27'3 + 8372 — 8471 + 857, SO 85 = —0—10/3 — 14 + 27 = 29/3. [lecture
and homework] [10 marks]

Solutions that avoid Newton’s identities, instead solving directly for the elementary symmetric functions
in terms of the power sums, will be given 1 mark for r;1, 2 for 72, 3 for r3, and 4 each for s4 and ss.

&ii. The sum of the roots is 2(a+b+c) = 2r; = 6; the sum of products of pairs is 3(ab+bc+ca)+a? +b?+c? =

(a+b+c)? + (ab+ bc+ ca) = r? + ro = 11; and the product of the roots is

2abc + a®(b+ ¢) + b*(a + ¢) + c*(a + b)
=2r3+ (a+b+c)(a® +b* +c*) — (@® +° + %)
=2r3 +r152 — S3
= —4/3+15—7=20/3.

Thus the desired polynomial is #3 — 622 4+ 11z — 20/3. [lecture and homework] [6 marks]



