Math 343 Solutions.

1. (a) A group is a set G with a law of composition satisfying the following
axioms:

G1) for any z,y € G, zy is in G}
G2) for any z,y,z in G, z(yz) = (zy)z;

(

(G2)

(G3) there is an element 1 in G such that for all g € G, g1 = g = 1g.
(G4)

G4) given an element g € G, there is an element g ! of G with gg~ ! =1 =g !g.
[4 marks]
The inverse of X is X itself and the inverse of Y is the matrix
— 0
0 2 /)°
[2 marks]

Since X = X!, X2 = I. Also, we note that Y? = —I,Y3 =Y ! so Y has order
4.
[2 marks]
Thus it is clear that (X) contains I,Y,Y? Y3 X, XY, XY? XY3. To show
that these eight matrices form a group, we compute their multiplication table:

1 Y Y2 v3 X XY Xy? Xy3
1 1 Y Y2 Y3 X XY XYy? Xy3
Y Y Y2 v?3 I Xy X XY XVY?

Y2 | vy v3 1 Y XY? XY® X XY

Yy | V3 1 Y Y2 XY XY? XY? X

X X XY Xy? Xy? I Y Y2 v?
XY | XYy Xvy? Xy3 X Y3 1 Y Y?
XY? | Xy? Xy* X Xy Yy? Y3 1 Y
XY? | Xy? X XY XY? Y Y2 v? 1

[6 marks]

This group is non-abelian since XY and Y X are unequal. [1 mark]

Let
a b
7=(% 1)

be the required matrix. Then the condition that XZ = ZX yields the matrix

equation
cd\ _ (boa
a b)) \d c



so that @ = d and b = ¢. Then the condition that YZ = ZY gives that

ai —bi \ _ ai bi
bi —ai )] \ —bi —ai |

Thus b = 0, so Z has the form
a 0
0 a /"

If Z%2 = I, then a = £1, so the only non-identity matrix of this from is —I which

is equal to Y2 [3 marks]
It then follows from our table that Z commutes with every element of G.
[2 marks]

2. Lagrange’s Theorem states that if |H| is a subgroup of a finite group G then
|H| divides |G| and |G|/|H]| is equal to the number of distinct cosets of H in G.
[2 marks]
If G has order p, let = be any non-trivial element of G, then |(x)| has order
dividing p. Since this order is not 1 by choice, it must be p, so G = (z) and so G
is cyclic. [3 marks|
If H has p elements and K has ¢ elements, then since H N K is a subgroup of
H, the number of elements in H N K divides p and since H N K is a subgroup of
K this number of elements divides ¢. Since p and ¢ are distinct prime numbers,
the only possibility is for H N K to contain just one element, so H N K = {1}.
[2 marks]
Now, we are given that yz = 271y (the anchor step), so suppose that yz* =
7%y then

yrftl = yaky = o kyy = o~ (F+Dy,

as required [2 marks]

To find the order of each of the 12 elements of G we note that x has order
6, so 22 has order 3, 2> has order 2, z* has order 3 and z® has order 6. Also
yriyx' = y(yz~*)z* = y? = 1, so each other element of G has order 2. [4 marks]

Since G has 12 elements, the possible orders of subgroups of G are 1,2, 3,4,6
or 12. Thus G has no element of order 4 but could possibly have a subgroup of
order 4 since 4 divides 12. If G has a non-cyclic subgroup with 4 elements, each
non-identity element has order 2, and this group is abelian. The element 2* has
order 2 and commutes with y (since yz® = 73y = 23y), so the required subgroup
is {1, 2%y, yz3}. [6 marks]

Finally, we see that the only number in the list of divisors of 12 which could
correspond to a non-abelian subgroup of G is 6, so the only possible proper non-
abelian subgroup of G' could have order 6, since the other divisors are prime or 4
and groups of order 4 are abelian. [2 marks]



3. Suppose that zH, yH are two left cosets of H in G and suppose that these
cosets are unequal. If z is an element in both zH and yH, then z = zh and
2z = yh, for some h,hy € H. Thus zh = yhy, so y~'z = hyh~!. Then y~'z is an
element hy, say of H since H is a subgroup. It then follows that x = yhs, so that
xH = yhoH. Since hy is an element of H, and H is a subgroup, hoH = H, so
xH = yH contrary to assumption. We deduce that if tH,yH are unequal they
can have no elements in common. [4 marks].

To show that the given set H is a subgroup, name its elements as I, A, B (in
the given order) and compute the table

|1 A B
I[T A B
AlA B I
B|B I A

It is clear from this that H is closed, has an identity (/) and the inverse of A is
B. Since matrix multiplication is associative, H is a subgroup. [3 marks]

Now to compute the left cosets of H in G, IH = H = {1, A, B}, and —[H =
{-I,—A,—B}. Then

()=o) (5 S ) (0

Finally, we note that

(5= ) ()G A

These 12 elements exhaust the complete list of elements of the group, so we have
found 4 distinct cosets [4 marks].

To find the right cosets, use the same coset representatives. It is clear that
IH = HI and that (—I)H = H(—1I), so we only need to compute

(3 o)=tr o) (538 S
()= )R )G A

Thus, we see that left cosets are right cosets so H is a normal subgroup [2 marks]
The square of every element of GG is in the subgroup H, so the square of every

and

coset is the identity coset, so G/H is not cyclic. [4 marks]
The given set is not closed under multiplication, (the square of neither non-
identity element is in the set) so K cannot be a normal subgroup. [3 marks]



4. Let 9 : (G,0) — (H,x*) be a group homomorphism. Then for all z,y in G,
Iz oy) =9(z) xI(y). [1 mark]

It follows that J(1¢g) * 9(g) = I(g) for all g € G, so ¥(1¢) is the identity
element of H (by uniqueness) as required.

Also ¥(g) * 9(h) = ¥(1g) = 1y, so ¥(h) is the inverse of J(g). [2 marks]
We have
ker 9 ={g€ G:9(9) =1n}
[1 mark]
and
im 9 ={h € H: h=19(z) for some z € G}.
[1 mark]

Then K=ker ¥ is a subgroup, because 15 € K. If x, y are elements of K, then
Iz) =9(y) = 1g,s0 I(xzoy) = I(x)xI(y) = 1lg*x1yg = 1y, so zoy € K. Finally
since 9(¢7 ') = 9(g) ", 9(g ') = 17! = 1y and ¢! € K. It only remains to
show that K is a normal subgroup. If g € G and k € K then

Hgokog ) =9(g) x 1y *xV(g)"" =1g

sogokogleK. [4 marks]
The homomorphism theorem says

(a) im ¥ is a subgroup of H;

(b) ker ¥ is a normal subgroup of G;

(c) the quotient group G/ker? is isomorphic to im 9. [3 marks|
1 a b c 1 d e f
01 a b 0 1 d e
Wo o1 af) P90 01 qa))=0te
0 0 0 1 0 0 0 1
since a + d is the (1,2) entry of the product matrix, 9 is a homomorphism.
[2 marks]
However
1 a b c 1 d e f
0 1 a b 0 1 d e
Uo o1 o) T%0 01 a])=0F"
0 0 0 1 0 0 0 1

whereas the (1,3) entry of the product matrix is b + e + ad. Since these are
unequal in general, ¢ is not a homomorphism. [2 marks]
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Now ker ¥ consists of those matrices with ¢ = 0, and

1 0 b ¢ 1 0 e f 1 0 e+b f+c
01 0 b 01 0 e[ 101 0 b+e
0 01 0 001 0| 00O 1 0
0 0 0 1 0 0 0 1 0 0 0 1

so ker ¥ is clearly abelian. Thus G/ ker ¥ is isomorphic to a subgroup of the
integers so is cyclic and so G has an abelian normal subgroup with quotient
group infinite cyclic, using the homomorphism theorem. [4 marks|

5. The sign of the identity permutation is even. The sign of an I-cycle is odd if [ is
even and the sign is even if [ is odd. The sign of a composite of two permutations
is the product of the signs. [2 marks]

It follows that the product of two even permutations is even, that the identity
is in A(n) and that the inverse of a permutation 7 has the same sign as 7, so
A(n) is a subgroup. It is normal since if 7 is even and « is any permutation then

the sign of o 'ra is 1, so A(n) is normal. [3 marks]
The set of odd permutations is not a subgroup because it isn’t closed (the
product of two odds is even). [1 mark].
If 7 is a product of r distinct cycles of lengths [;,...[. then 7 has order the
Lem. of Iy, ...1,. [1 mark]
Now suppose that 7 has odd order k. Then if 7 were odd, 7% would have sign
(—=1)* = —1, so would also be odd. But 7% = 1 is even, so this contradiction
shows that 7 is even. [3 marks]

To determine orders of elements, we only need consider possible cycle types:

n=4 n=>5 n==06
cycle type order | cycle type order | cycle type order

(2) 2 (2) 2 (2) 2

(3) 3 (3) 3 (3) 4

(4) 4 (4) 4 (4) 4

(2)(2) 2 (2)(2) 2 (2)(2) 2

(5) 5 (5) 5

(2)(3) 6 (2)(3) 6

(6) 6

(2)(2)(2) 2

(2)(4) 4

(3)(3) 3
[4 marks]
We now see that 5 is the smallest integer such that S(n) has an element of
order 6, since S(2) and S(3) do not have elements of order 6. [2 marks]



Finally, the smallest n with S(n) having an element of order 10 is 7 (an
example being (1 23 4 5)(6 7)), but this element is odd so we need the mimimum
of an extra transposition to have an even element of order 10 ((123 4 5)(6 7)(89)),

so the required number is 9.

6. A set X is a G-set if there is an action o : G X X — X such that:

lgox =z forallz € X

ghox=go(hox)forall ggh € G and all z € X.

The stabilizer G, of x € X is

G,={9€G:gox=uzx}.

The orbit O, is

O ={y:y = goux for some g € G}.

The orbit-stabilizer theorem says
G is a subgroup of G.
If G is finite, then |0, = |G : G-

To show conjugacy satisfies the two G-set axioms:

lox = 1z17}, and

(gh) ox = ghx(gh) ' = ghzth™'g7' = go (hah™') = go (ho ).

[4 marks]

[2 marks]

[1 mark]

[1 mark]

[2 marks]

The orbit of x is the conjugacy class of z and the stabilizer of x is its centralizer

Ce(z) ={h € G: hg =gh}.

[4 marks]

The elements of A(4) are the identity element together with the 8 3-cycles

(123), (132), (124), (142), (134), (143), (234), (243)

and the 3 products of disjoint 2-cycles

(12)(34),(13)(24),(14)(23).
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[1 mark]

The identity element is always a conjugacy class on its own. [1 mark]

The elements {1, (1 2 3), (1 3 2)} are in the centralizer of (1 2 3), so it has at
most 4 conjugates. However

(12)B34123)12)(34) = (214)=(142),
(13)((24)(123)(13)(24) = (341)=(134), and
(14)((23)(123)(14)(23) = (432)=(243)

o (1 2 3) has precisely 4 conjugates [3 marks]
In a similar way, we see that (1 3 2) has as its 4 conjugates (1 3 2), (1 2 4),
(143)and (234). [2 marks]

We now have counted 9 elements of GG, so only 3 remain. These form a single
conjugacy class since

(123)(12)(34)(132) = (23)(14);
124)12)(34)(142) = (24)(31); and
134)(12)(34)143) = (13)(24

Thus G has 4 conjugacy classes. [3 marks|

7. Let p be a prime and G be a finite group of order p*n where p does not divide
n. Then:

(1) G has Sylow p-subgroups (subgroups of order p*);

(2) the number of these is congruent to 1 mod p;

(3) if P is a Sylow p-subgroup and @ is any p-subgroup, there is an element
g of G such that gQg¢~! C P;

(4) any two Sylow p-subgroups are conjugate, the number of these divides
|G]|. [4 marks]

If there is precisely one Sylow p-subgroup P, then every conjugate of P must
be equal to P, so P is a normal subgroup. If P is normal, then every conjugate
of P is equal to P, so each Sylow p-subgroup must equal P. [2 marks|

Suppose that G is a group of order 15=3 x 5 the number of Sylow 3-subgroups
is 1,4,7,10,,... and divides 15, so is 1. The number of Sylow 5 subgroups is
1,6,11,16,... and divides 15 so is also 1. Thus G has a unique Sylow 3-subgroup,
P, say, and a unique Sylow 5-subgroup (), say. These are each normal with P
containing all 2 non-identity elements of G of order 3 and () containing all 4
non-identity elements of G' of order 5. It follows by Lagrange that there must be
elements of G of order 15 (the only other divisor of 15), so G is cyclic. [5 marks]

Now suppose that G is a group with 12=4 x 3 elements. The number of Sylow
2-subgroups is either 1 or 3. The number of Sylow 3-subgroups is either 1 or 4.
If the Sylow 3-subgroup is not normal, there are 4 Sylow 3-subgroups. These



distinct subgroups would all intersect in the identity element, giving in total 8
elements of order 3, and only leaving 3 elements of GG to be distributed in the
Sylow 2-subgroups. Since a Sylow 2-subgroup has 3 non-identity elements, it
follows that there could only be one Sylow 2-subgroup. We deduce that G either
has a normal Sylow 3-subgroup or has a normal Sylow 2-subgroup. [4 marks|

Finally, there are 5 possible groups to choose from, but an obvious choice is
an abelian group (such as Cg) together with D(4) and @, the quaternion group
of order 8. Since the latter 2 are non-abelian, neither can be isomorphic to the
abelian one. Also () only has one element of order 2 whereas D(4) has 5 elements
of order 2, so these are not isomorphic. [6 marks]|

8. The Jordan-Holder Theorem says that any two composition series of a group
are isomorphic. [1 mark]
A composition series is a finite series of subgroups, each normal in the next

G=Gy>G >--Gy={1}

which can not be refined without repeating terms. [1 mark]
Two composition series are isomorphic if there is a bijection between the
quotient groups in the respective series so that corresponding quotient groups
are isomorphic. [1 mark]
(a) Let G be a cyclic group of order 4 generated by = (so 2* = 1). Then (z?)
is a subgroup of G which is normal since G is abelian. It follows (since 2 is prime)
that a composition series for G is

G > (z%) > {1}

[3 marks]

(b) Now let G' be a non-cyclic of order 4 and let y be a non-identity element

of G (so that y* = 1). Apply the same argument as in (1) with (y) replacing
(x?), to obtain the composition series

G=(y) ={1}.

({y) is normal since it has index 2).
[3 marks]
(c) Next, let G be cyclic of order 10 (so it is generated by z with z!* = 1).
Consider the subgroup (z?) of order 5. It is normal because G is abelian. The

series
G > (z%) > {1}

cannot be refined because 2 and 5 are primes, so is a composition series.
[3 marks]



(d) Now let G be the symmetric group S(4). The four elements
1 (12)(3 4 (13)(2 4 (1 92 3)

form a subgroup V' which is normal since the three non-idenitity elements form
a conjugacy class. Also the alternating group A(4) has index 2 so is normal. So

we have a series for GG
G>AM4) >V >{1}

since S(4)/A(4) has order 2 and A(4)/V has order 3 these bits cannot be refined,
so we are left with the problem of whether V' has a better composition series.
This is solved in (b), so a composition series is

G>AMA)>V>{1,1203 4} > {1}

[5 marks])

(e) We finally turn to the dihedral group D(6). The subgroup (z) is cyclic of

order 6 and is normal because it is of index 2. Also (x?) is a subgroup of this and
is normal because (z) is abelian, so a composition series is

G > (z) > (z*) > {1}.

This cannot be refined beacuse the factors are of prime order.
[3 marks]



