Math 343 2005 Solutions.

1. (a) A group is a set G with a law of composition satisfying the following
axioms:

G1) for any z,y € G, xy is in G,

)

G2) for any z,y, z in G, z(yz) = (zy)z,

G3) there is an element 1 in G such that for all g € G, g1 = g = 1g,
)

(
(
(
(G4 givlen an element g € G, there is an element ¢! of G with gg~! =1 =
9 °9-

[4 marks]
Writing the given permutation in cycle notation, it is clear that 6 = (1 2 3 4)
and so §~! = (1 4 3 2). The condition that 8¢ = #0~! can now be checked
at each integer in {1, 2, 3,4}, so given that ¢(1) = 1:

06(1) = ¢0~" (1)

or ¢(4) = 0¢(1) = 2. Similarly, 0¢(2) = ¢(1) = 1, so ¢(2) = 4. Finally
06(3) = ¢(2) = 4 so ¢(3) = 3. It follows that ¢ = (2 4).
[5 marks]
Now let G = (6, ¢). Then the four powers of § are clearly in G together
with their products with ¢. Thus G has at least 8 elements:

lg, (1234),(13)(24),(1432),(24),(14)(23),(13), and (1 2)(3 4)

(or 1,0,6%, 03, ¢, #0, p62, 0° in our previous notation).
[3 marks]
In order to show that GG consists of precisely these 8 elements, we must
show that these elements do indeed form a group, since we have already
seen that the group generated by the permutations contains at least these 8
elements. To establish this, we need to do something equivalent to calculating
the multiplication table for the elements. The table is



1 0 02 0 ¢ 0 96? @96
1 1 0 02 0 ¢ 0 $0? ¢6?
0 0 02 0 1 002 o Pf  PhH?

2 16?2 0 1 0 00?2 ¢0® o @

0 10 1 0 02 0 PH* 96® ¢

o o Pf ¢0? ¢ 1 0 62 63

o0 |90  P0* 0> ¢ 6 1 0 62

00% | 0% 90 ¢ 0 6% 6 1 0

002 | 00 o PO @0 0 2 0 1
The table shows closure, identity and inverses. Since permutations are maps
and are therefore associative under composition, we have shown that the 8
elements form a group and so this is the group generated by 6 and ¢. [Of
course any alternative way to enumerate the group elements or express the
table will attract full marks.|

[6 marks]
Finally, we need to find a non-trivial element of G for which the corre-
sponding row of the table is equal to the column for that element. A visual

inspection shows that we can take z to be §2.
[2 marks]

2. First, we show that the equation does have a solution by setting z = u~!v
so that
ur = u(u") = (uwu v =1v =v

using (G2), (G4) and (G3) respectively. Now the solution is unique because
if ur; = v and uxs = v then uz; = uw, so multiplying on the left by u=*
gives u ' (uz1) = v (uze). Now using associativity, (v 'u)z; = (u tu)z,.
Then the inverse axiom implies that 1x; = 1z, so finally the identity axiom
shows that ;1 = z+.
[4 marks]
Now

(wo)(w u ) =uw@ D)) =u((vv Hu ) =ulgu  =uu ! = 1g,

1 1

u~" as required.
[2 marks]
If G = D(6), the solution to ax = ba® is obtained by premultiplying

by a ! to obtain z = a 'ba®. It only remains to put this in our standard

So since inverses are unique, the inverse of uv is v~

2



L or ba = a 'b to obtain the unique

form using the relation that b 'ab = a~
solution that x = baa? = ba?.

[2 marks]

Similarly, if e 'ya = b, postmultiply by o' to give a 'y = ba~!. Now

premultiply by a to obtain y = aba!. Then using the fact that ab = ba™?!,

we see that the equation has the unique solution y = ba~'a™! = ba=2 = ba*.

[3 marks]

Next consider the equation zaz™' = a® = a~!. We are given that b

provides one solution to this equation. Clearly, all powers of a commute

with a, so also consider
(ba)a(ba)™ = baaa bt =bab™' = a7 !,

so ba is another solution. (In fact ba?, ba® ba* and ba® are the others).
[3 marks]

! = @3 has no solution, square both sides to obtain

To show that xax™
(@®)?=ad"=1= (zaz™")? = vaz trazr™' = za’s™*
If this were the case, we would deduce (after premultiplying by z~! and
postmultiplying by x) that a® = 1, so this is impossible. Taking x to be any
of the six powers of a gives zax™' = a and if v = ba’, then
raz = ba'a(ba’) "t = ba" e b = bab t =a Y,
so the equation zaz™' = a? has no solutions. (Alternatively, one could cube

the equation zaz™' = a® to obtain a contradiction.)
[6 marks]

3. An element g of a group G has order k if £ is the smallest positive integer
such that ¢* = 1.
[2 marks]
Lagrange’s Theorem states that if |[H| is a subgroup of a finite group G
then |H| divides |G| and |G|/|H]| is equal to the number of distinct cosets of
H in G.
[2 marks]
If now ¢ is an element of G' of order k, we consider the k distinct powers
of g H={1,9,4¢%...,9*'}. It can be checked that H is a subgroup:



the set contains 1¢(= %), and is closed under products since g'g’ = g**7.
After reducing 7 + 7 modulo k&, this is another element of H. Similarly H is
closed under inverses (the inverse of 1 is 1 and for ¢ # 0 the inverse of ¢’ is
gk ).

It follows by Lagrange that k divides |G|. In particular, if G has an
element of order 2, then 2 divides |G|, so G has even order.

[4 marks]

The subgroup H is cyclic generated by g if ¢ is an element of H and every
element of H is a power of g. Now suppose that g has order £ and m is a
divisor of k£ so that £ = mn for some integer n. Then ¢" certainly satisfies
(™)™ = g™ = gF = 1. If g" has order r, say for r < m, then 1¢ = (¢")" =
¢™". This would contradict the definition of k since nr < mn = k, so g™ has
order m as required.

[6 marks]

Now let n be an even integer and G be D(n). In G , every element of the
form ba' has order 2 (since ba’ba’ = b~ a’ba’ = a'a’ = 1¢), so in the search
for elements of order 4, we only need consider powers of a, these generate
a subgroup with n elements, so the condition that one of these has order 4
is that 4 divides n (by Lagrange). Conversely, if 4 divides n, then by the
previous argument H, the subgroup generated by a will have an element of
order 4. Thus the required condition is that 4 divides n.

[6 marks]

4. Suppose that +H, yH are two left cosets of H in G' and suppose that these
cosets are unequal. If z were an element in both *H and yH, then z = xh
and z = yh; for some h,hy € H. Thus zh = yhy, so y~'z = hyh~!. Then
y~ 'z is an element ho, say of H since H is a subgroup. It then follows that
rH = yH contrary to assumption. We deduce that if xH,yH are unequal
they can have no elements in common.
[4 marks]
A subgroup N is a normal subgroup of G if, for all n in N and g in G,
gng ! is an element of G.
[1 mark]
Now let G be the dihedral group D(4), and H be the subgroup with two
elements 1 and b. Since |H| = 2, there are four distinct left cosets and since

H, aH = {a,ab=0a}, o’H = {a® a’b=0ba’}, a*H = {a® a’b= ba}



this is the complete list of (left) cosets. The right cosets are
H, Ha={a,ba}, Hd*={a®ba*}, Ha®={a’ ba’}.

Note that aH is not equal to Ha. We see that {1, a, a?, a®} are representatives

for the distinct left cosets, and that these elements form a subgroup of GG
(generated by a).

[6 marks]

Now let K be the subgroup with the two elements {1, a?}. Clearly, for

all g in G, glg™' = 1, so consider conjugates of a®. Since a? commutes with

both @ and b, it commutes with all elements of G and so g~ 'a%g = a? for all

g. Thus H is a normal subgroup of G. The quotient group G/K has order 4

and is not cyclic, since every coset gK has order 2. [4 marks|

If now L were a subgroup with 4 elements and two left cosets, L and a%L,
first consider the possibility that some power a’ is in L. If this power is 1 or
3, then a? = a®” would also be in L since L is a subgroup. If this power were
0 or 2, then clearly a? would again be an element of L. It follows in either
case that L and a?L would not be distinct cosets (having the element a? in
common). We conclude that L would consist of 1 together with 3 elements
of the form ba’. Since the product of any two distinct elements ba® with ba’
is a power of a, we return to the impossible situation that a power of a is in
L.

[5 marks]

5. The conjugacy class of g is the set of distinct elements of G of the form
2 lgx as x varies over G. The centralizer of g is the set of elements of G
which commute with g so

Colg)={z€G:2g=gx}={z€G:g=12 "gz}.

[2 marks]
The required result is that the number of distinct elements in the conju-
gacy class of G is equal to |G|/|Ca(g)|- [2 marks]

Now let G be the dihedral group D(n) with n = 2k. Since a’a’ = o't/ =
a’a’, each power of a commutes with each other power of a. Also, as given,
b=la*b = a=*. Since a?* = 1, b='a*b = a*, so a*b = ba*. Since a and b
commute with a®, every element of G commutes with a*, and so C;(a*) = G
and, by our basic result, a* only has one conjugate. In any group, 1¢ only



has one conjugate. All other powers of a have n elements in their centralizer
(all powers of a), but b does not centralize any such power, and so a* (for
0 < i < k) has precisely 2 conjugates. Thus the 2k powers of a fall into
2+ (n—2)/2 = (n+2)/2 conjugacy classes.
[6 marks]
Now turn to elements of the form ba® and consider first the conjugates of b.
Clearly b and a* centralize b, so defining K to be the subgroup {1, b, a*, ba*}
it is clear that K C Cg(b). This subgroup K has k distinct left cosets. Rep-
resentatives for these are {1,a,a?,...a*"1}. This is because every element of
G is clearly a product of an element of K with a* for some 0 <4 < k—1 and
furthermore, any two cosets a‘K and o’ K are distinct (inspect powers of a
in each). Thus b has k conjugates these being the elements

a”ba! =i e h=aFb=ba% for0<i<k—1.

[6 marks]

A similar argument show that ba also has k conjugates these being ba?**
for 0 <4 < k—1. Thus elements of the form ba’ fall into 2 conjugacy classes
both with k£ elements so G has (n +2)/2 + 2 = (n + 6)/2 conjugacy classes

in total.
[4 marks]

6. Let 6 : (G,0) — (H,*) be a group homomorphism. Then for all z,y

in G: f(zoy) =0(x) *6(y). [1 mark]
We have
ker 0 ={g € G:0(9) =1}
[1 mark]
and
im0 ={h € H:h=_0(z) for some z € G}.
[1 mark]

The homomorphism theorem states that if § is a homomorphism from G
to H then:

e im f is a subgroup of H;
e ker f is a normal subgroup of G and

e G/ ker § = im 0.



[3 marks]
Before checking for the homomorphism property, it might be convenient
to obtain the formula for the product of two elements A, B in G:

a b c d r s t u
0 a b ¢ 0 r s t
0 0 a b 0 0 r s
0 00 a 000 r
ar as+rb at+bs+cr au-+bt+cs+dr
_ 0 ar as +rb at + bs +cr
o 0 0 ar as +rb
0 0 0 ar

(a) To check if #; is a homomorphism (since addition is the operation in
H), we need to see if 6, (A) +6,(B) = 6,(AB). From our formula for AB, we
see that 6;(AB) would be as + br. However 0;(A) = b and 6,(B) = s, so 0,
is not a homomorphism in general (for example if b=s=1and a =r = 2).

[4 marks]

(b) A similar argument for #; (remembering that the target group is a
group under multiplication) shows that we need to check if ar is equal to ar.
This is clearly the case, so 6 is a homomorphism.

[2 marks]

Now compute ker #,. This is the set of matrices in G with ¢ = 1 also im
0, is the whole of H.

[2 marks]

It follows by the homomorphism theorem that G has a normal subgroup
(N = ker 6,) with G/N isomorphic to H. Thus G/N is abelian. Finally N
is abelian because our general formula would give AB as

1 s+b t+bs+c u+bt+cs+d

0 1 s+b t+bs+c

0 0 1 s+b

0 0 0 1
and BA as

1 b+s c+sb+t u+bt+cs+d

0 1 b+ s c+sb+t

0 0 1 s+b

0 0 0 1



Since AB and BA are symmetric in their entries, N is abelian as required.
[6 marks]

7. Let p be a prime and G be a finite group of order p*n where p does not
divide n. Then:

(1) G has Sylow p-subgroups (subgroups of order p*),

(2) the number of these is congruent to 1 mod p,

(3) if P is a Sylow p-subgroup and @ is any p-subgroup, there is an
element g of G such that ¢gQg ! C P,

(4) any two Sylow p-subgroups are conjugate, the number of these divides
|G]|. [4 marks]

If there is precisely one Sylow p-subgroup P, then every conjugate of P
must be equal to P, so P is a normal subgroup. If P is normal, then every
conjugate of P is equal to P, so each Sylow p-subgroup must equal P.

[2 marks]

Suppose that G is a group of order 15=3 x 5 the number of Sylow 3-
subgroups is 1,4,7,10,,... and divides 15, so is 1. The number of Sylow 5
subgroups is 1,6, 11, 16, ... and divides 15 so is also 1. Thus G has a unique
Sylow 3-subgroup, P, say, and a unique Sylow 5-subgroup @), say. These are
each normal. If z is an element of order 3, then (x) has three elements and
so is equal to P. Thus P contains all (both!) non-identity elements of G' of
order 3. Similarly () contains all 4 non-identity elements of G of order 5. It
follows by Lagrange that there must be elements of G of order 15 (the only
other divisor of 15), so G is cyclic. [4 marks|

Now suppose that G is a group with 12 = 4 x 3 elements. The number
of Sylow 2-subgroups is either 1 or 3. The number of Sylow 3-subgroups
is either 1 or 4. If the Sylow 3-subgroup is not normal, there are 4 Sylow
3-subgroups. In this case, these distinct subgroups would pairwise intersect
in the identity element ( if S; # S, then S; N Sy would be a strict subgroup
of a group with 3 elements, so would be {15}). This would give, in total,
8 elements of order 3, and so only leave 3 non-identity elements of G' to be
distributed in the Sylow 2-subgroups. Since a Sylow 2-subgroup has 3 non-
identity elements, it follows that there could only be one Sylow 2-subgroup.
We deduce that G either has a normal Sylow 3-subgroup or has a normal
Sylow 2-subgroup. [4 marks]



Finally, if G is the alternating group on 4 symbols, G has 12 elements.
These are the identity element (order 1) three elements of order 2 ((1 2)(3 4),
(1 3)(2 4) and (1 4)(2 3) and eight three cycles each of order 3:

(123), (132), (124), (142), (134), (143), (234), (143).

Then G has Sylow 2 subgroups (with 4 elements) and Sylow 3 subgroups
(with three elements). There are 8 elements of order 3 in A(4), and since a
Sylow 3-subgroup has three elements, these 8 elements must be distributed
over 4 subgroups. The number of Sylow 2-subgroups is 1 or 3. Since there
are only 3 elements of order 2 in G (and no elements of order 4), there can
only be one Sylow 2-subgroup. Thus G has four Sylow 3-subgroups and 1
Sylow 2-subgroup.

[6 marks]

8. The Jordan-Holder Theorem says that any two composition series of a
group are isomorphic. [1 mark|

A composition series is a finite series of subgroups, each normal in the
next

G=Go>G >---Gp={1}

which can not be refined without repeating terms. [1 mark]
Two composition series are isomorphic if there is a bijection between the
(unordered) set of quotient groups in the respective series so that correspond-
ing quotient groups are isomorphic.
[1 mark]
If H/K has prime order p, a normal subgroup L of H with K < L < H
would give rise to a normal subgroup of H/K. Since H/K has prime order,
so L is either H or K. [3 marks]|

(a) Let G be a cyclic group of order 6 generated by z (so 2° = 1). Then
(x?) is a subgroup of G with 3 elments which is normal since G is abelian.
It follows (since 3 is prime) that a composition series for G is

G > (z%) > {1}

[2 marks]

(b) Now let G be the dihedral group D(2p) with generators a of order 2p
and b of order 2. Then K = (a) has 2p elements and is a normal subgroup

9



of G since its index is 2. Next G (or K) has a Sylow p-subgroup with p
elements and the number of these is congruent to 1 mod p and divides 4p (so
is 1,2,4,p,2p or 4p). Thus this number is 1 and there is a unique Sylow p
subgroup P. This subgroup P must be contained in K because K also has
a Sylow p subgroup and P is unique. The required series is then

G>K>P>{1}.

This is indeed a composition series for GG, since we have seen that P is a
normal subgroup of G, K has index 2 in G and P has index 2 in K also all
the indices are prime .

[6 marks]

(c) Next, let G be a group with 21 elements. The number of Sylow 7-
subgroups in GG is 1 mod 7 and divides 21, so is one. Thus this subgroup
S, say, is a normal subgroup of G. Because 7 is prime, S has no non-trivial
proper subgroups and since S has index 3 in G, no subgroup of G lies between
G and S, so the series

G>S>{1}

is a composition series.
[4 marks]

(d) Now let G be the symmetric group S(3). The alternating group
of even permutations has 3 elements and so has index 2 and is a normal
subgroup of G (an alternative construction for this subgroup N of index 2
would be as the group generated by (1 2 3)). Thus a composition series is

G > N <{lg}

since both the indices in this series are prime.
[3 marks]
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