Math 343 2004 Solutions

1. A group is a set G with a law of composition satisfying the following
axioms:

G1) for any z,y € G, xy is in G,

(G1)
(G2) for any z,y, z in G, x(yz) = (zy)z,

(G3) there is an element 1 in G such that for all g € G, g1 = g = 1g,
(G4)

G4) given an element g € G, there is an element g ! of G with gg ! =1 =
97'g.
[4 marks]

Writing the given permutations in cycle notation, we have an element
7 =(1234)(5876)in G. It is clear that the powers of 7 (namely
(1 3)(24)(57)(6 8),(1432)(56 7 8) and the identity permutation) are
also in GG, together with the products of these four permutations by p =
(1537)(2648). Thus G has at least 8 elements:

lg, (123 4)(5876),(13)(24)(57)(68),(1432)(5678),
(1537)(2648),(1638)(2745),(1735)(2846),(1836)(2547).

[4 marks]

In order to show that GG consists of precisely these 8 elements, we must
show that these elements do indeed form a group, since we have already
seen that the group generated by the permutations contains at least these 8
elements. To establish that the elements do indeed form a group, we need
to do something equivalent to calculating the multiplication table for the
eight elements. In our earlier notation, these elements are 1,7, 72, 7% and
p, p, pr2, pm3. The table then is



1 7 w2 7 p pr pn? prw

1\ 1 7 72 7w  p pr pr? pr

T T w2 m 1 pnd p pT pm
| 72 7 1 7 pn? pn®  p pm
w7 1 7 w2 pr pn? pn®  p
ol p pr opn?t prd w* w1 1
pr | pr pr? prd  p 9w w2 @ 1
prt | pn? pn® p pr 1w w2 7
prd |l ped p pm opmd W 1w x?

The table shows closure, identity and inverses. Since permutations are maps
and are therefore associative under composition, we have shown that the 8
elements form a group and so this is the group generated by 7 and p. [Of
course any alternative way to enumerate the group elements or express the
table will attract full marks.] [8 marks]|

As for the orders of the elements of G, we can use the table (say) to see
that the only element of order 2 is w2. All other non-identity elements of G

have square equal to 72 and so have order 4.
[2 marks]

Finally, we need to find a non-trivial element of G for which the corre-
sponding row of the table is equal to the column for that element. A visual

inspection shows that we can take z to be 72.
[2 marks]

2 (1). Let z,y be the elements of X. The possible maps from X to X are
then

We see that two of these maps are bijections (f; and f4), but the other two
are not bijections. Since the condition for a map to have an inverse is that
it is bijective, some members of the set of maps from X to X do not have
inverses and so this set cannot be a group. [6 marks]



(2) A subgroup H of a group G is said to be cyclic if there is an element A
in H such that each element of H is a power of our fixed h.
[2 marks]
Lagrange’s Theorem states that if H is a subgroup of a finite group G
then |H| divides |G| and |G|/|H]| is equal to the number of distinct cosets of
H in G.
[2 marks]
If G has order p, let x be any non-trivial element of G, then [(z)| has
order dividing p. Since this order is not 1 by choice, it must be p, so G = ()
and so G is cyclic.
[4 marks]

Now, for the group D(4), the subgroup {1,a,a? a®} consisting of the
powers of a is a cyclic subgroup with 4 elements. A non-cyclic subgroup is
slightly harder to find, but we can check (by giving its multiplication table)
that the set {1, a?, b, ba®} is a subgroup:

1 a®> b ba?
1 |1 2 b ba?
a> |a® 1 ba® b
b |b  ba® 1 a?
ba? | ba? b a® 1

This subgroup is not cyclic because every non-identity element has order 2.
[6 marks]

3. Suppose first that tH = yH. Then, since 1 € H, z1g = x € yH. Thus
x = yh for some h € H. Then y~'z = h € H. Conversely, if y"'la =h € H
and zh; € zH then, since x = yh, xhy = yhh, = yho with hy € H so
xH C yH. On the other hand, if yh; € yH, then since y = zh™! we see
that yhy = xh™'hy = zhs for some hs in H. We deduce that yH C zH and
conclude that xH = yH. [6 marks]

The set H is a subgroup of G because it is the subgroup generated by a?,
of order 4. [Alternatively, one could construst the table for H.]
[1 marks]

The distinct left cosets of H in G are:

H=1H = {1,6* d" a’}
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aH = {a,d®d’ a"}
bH = {b,ba? ba*, ba®}
baH = {ba,ba’ ba’, ba’}.

[4 marks]

The right cosets H and Ha are clearly equal to H and aH respectively.
Also, since ab = ba”, an easy check shows that bH = Hb and baH = Hba, so
every left coset is a right coset and H is a normal subgroup of G.

[3 marks]|

The elements of G/H are the four cosets H,aH,bH,baH. Now

H?*=HH = H; (aH)?> = aHaH = o*H = H;
(bH)? = bHbH = b’H = H, (baH)? = baHbaH = (ba)’H = H.

Since every element of G/H has order 2, G/H is not cyclic.
[3 marks]
Finally if ¢g is any element of G, gH must be one of our four distinct
cosets, so (¢H)? = H. This means that ¢2H = H, so that g2 is an element
of H.
[3 marks].

4. For any element g in G, the conjugacy class of g is the set of distinct

conjugates (elements of the form z7'gz) . The centralizer of g is the set of

elements in G which commute with our given g: Cg(g) = {z € G : zg = gz }.

[2 marks]

To show that Cg(g) is a subgroup of G, first note that 1g is in Cg(g)

because 1¢ commutes with every element of G. If z,y € Cg(g), then zg = gx
and yg = gy. Then

(zy)g = z(yg) = z(g9y) = (zg)y = (92)y = g(zy)

so zy € Cg(g). Finally for x € Cg(g), 19 = gr so g = v 'gr and gz ' =

z 'g,s0 271 € Cg(g). Thus Cg(g) is a subgroup of G.
[3 marks]
Now consider what happens if two conjugates of g are equal: if zgz ! =
ygy~!, then zg = ygy~'z and y~'zg = gy~'z. Thus, y~'z is in Cg(z), and
so is equal to some element h in Cg(g). Then since y~'z = h, we see that



x = hy. Conversely, each element of the form hy (h € Cg(g)) will produce
the same conjugate as does y

(hy)~ ghy = y~"h™" ghy =y~ gy (since h € Cg(g))-

It now follows that when we form the |G| conjugates z—'gzx as x varies over
G, each value is repeated |Cg(g)| times, so the number of distinct values is
G1/|Cal(g)-
[5 marks]
We now turn to the group D(n) for n odd. Each power of a centralises
each other power. This follows from the index laws because
d'a! = a" = o’ = d’d’.
[1 mark]
It now follows that the centralizer of @’ has at least n elements. However
b does not centralize a’, since we are told that b= 'a’b = a~". If a* were equal
to a™* (non-zero %), then a? would equal 1. This is impossible because a
has order n and n is odd. It follows that each a*(i # 0) has precisely two
conjugates.
[3 marks]
As for b, we know that no power of a centralizes b, and the only other
elements in G are of the form ba’. If ba® centralized b, we would have b(ba’) =
(ba*)b. Since b has order 2, this would give that o' = a™* and, as we have
seen, this can only happen when ¢ = 0. Thus only 15 and b centralize b so b
has n conjugates.
[4 marks]
Thus we have: the identity element in a class on its own; the remaining
n—1 powers of a in (n—1)/2 classes with two elements each; and all elements
of the form ba’ in one conjugacy class. This makes 1+ (n —1)/2 +1 =
(n—1+4)/2 = (n+ 3)/2 conjugacy classes.
[2 marks]

5. Let # be a map from (G, o) to (H,*). Then 6 is a group homomorphism
if for all z,y in G, O(z o y) = O(x) x O(y). [1 mark]
It follows that 6(1¢) * 8(g) = 6(g) for all g € G, so 0(1¢) is the identity
element of H (by uniqueness) as required.
Also 6(g) * 6(h) = 0(1g) = 1g, so B(h) is the inverse of 8(g). [2 marks]



We have
ker 0 ={g€ G:0(9) =1}

[1 mark]
and

im0 ={h € H:h=_0(z) for some z € G}.

[1 mark]

To show that K = ker @ is a subgroup of G, note the 14 is in H since we

have just shown that 6(1g) = 1. Now if z,y € K then 0(x) = 15 = 0(y).
Since 6 is a homomorphism,

O(zy) = 0(x)0(y) = 1uly = 1y
so zy € K. Finally if x € K, 6(z) = 1y, and
0(z7") = (0(2))" = (1n)™" = 1a-

Thus H is a subgroup of G. Finally K is a normal subgroup, because if x is
in K and g is in G, then

0(g 'zg) =6(g ")b(z)0(g) = (8(9)) '1ub(g) =1g

[4 marks]
The homomorphism theorem states that if # is a homomorphism from G
to H then

e im @ is a subgroup of H;
e ker f is a normal subgroup of G and
e G/ ker §# = im 0.

[3 marks]
For two elements of G, we can evaluate their product (since in each map
the operation in group G is matrix multiplication):

(al bl) (CLQ bg) _ (0,10,2 a162+b162>
0 ¢ 0 e/ \L O c1Co '
Now consider the map 6;. Since

01((‘(‘)1 bl)) — b, and 01((‘62 62)) — by,

C1 Co
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It is clear that by + by is not equal to aiby + bicy in general (for example if
a; =1, ¢ = —1 and by # 0). Thus 6; is not an homomorphism. [3 marks]
However,

92((“01 bl)) — 4, and 91((“02 b?)) .

C1 C2

whereas

by + b
02((CL100,2 a1 26:32 162)) = a109.

Since the group operation in H is multiplication of non-zero numbers, 6, is a

group homomorphism. Its kernel is the set of matrices of the form <(1) Ié)

and its image is the complete set of non-zero real numbers. [5 marks]

6. If a permutation 7 is an n-cycle, then 7 is even when n is an odd integer
and 7 is odd when n is an even integer. For a general permutation, we use
the fact that the sign of a product of permutations is multiplicative.

[2 marks]
When 7 is written as a product of disjoint cycles, the order of 7 is the
least common multiple of the disjoint cycle lengths of 7. [1 mark]

Now consider

S M = 0eyE s,

)
6
Thus the sign of 7 is (—1)°® = —1 and 7 has order 2. As for
3
6

(12
-(2 3

we see that p has sign —1 x —1 = 1 and order 6. [4 marks]
The identity permutation is even (a product of disjoint 1-cycles). If 7
and p are even, so is mp. If 7 is even, since 77 ! = Ls(n), it follows that
n~! is also even. Thus A(n) is a subgroup of S(n). It is a normal subgroup
because it has index 2. [4 marks]
The alternating group A(4) has, by definition, only even elements. There
are 12 such elements: the identity element (which is of order 1), eight 3-cycles
(123),(132),(124),(142),(134),(143),(234),(24 3) (these are all of

order 3). The remaining three elements are (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)
all of order 2. [3 marks]

)
456 7 89
8 1

- 9>:(124875)(36),



In any symmetric group, orders of elements are determined by cycle types,
so possible orders in S(4) are 1, 2, 3, 4 or 2 (corresponding to cycles of length
up to 4 and products of two disjoint cycles). In S(5) we have cycles of orders
1, 2, 3, 4 or 5, disjoint cycles may be of the form (1 2)(3 4) (order 2) or
(1 2)(3 4 5) (order 6). Thus the required integer n is 5. [2 marks]

The situation is slightly different for alternating groups. The permutation
(1 2)(3 4 5) is odd, so the required m is greater then 5. However, S(6) has
two types of elements of order 6: 6-cycles and type (1 2)(3 4 5) again. Both
these are odd permutations and so are not in A(6). Turning to S(7), we can
form an extra type of permutation of order 6 such as (1 2)(3 4)(5 6 7). This
permutation is even, so the required m is 7. [4 marks]

7. Let p be a prime and G be a finite group of order p*n where p does not
divide n. Then:

(1) G has Sylow p-subgroups (subgroups of order p¥),

(2) the number of these is congruent to 1 mod p,

(3) if P is a Sylow p-subgroup and @) is any p-subgroup, there is an
element g of G such that gQg ! C P,

(4) any two Sylow p-subgroups are conjugate, the number of these divides
|G|. [4 marks|

If there is precisely one Sylow p-subgroup P, then every conjugate of P
must be equal to P, so P is a normal subgroup. If P is normal, then every
conjugate of P is equal to P, so each Sylow p-subgroup must equal P.

[2 marks]

Suppose that G is a group of order 33 = 3 x 11 the number of Sylow
3-subgroups is 1,4,7,10,,... and divides 33, so is 1. The number of Sylow
11 subgroups is 1,12, 23, , ... and divides 33 so is also 1. Thus G has a unique
Sylow 3-subgroup, P, say, and a unique Sylow 11-subgroup @), say. These
are each normal. If z is an element of order 3, then P = (z) so P contains
both the elements of G of order 3. Similarly if y is an element of order 11,
then @ = (y) so @ contains all 10 elements of G of order 11. It follows by
Lagrange that there must be elements of G of order 33 (the only divisor of
33 apart from 1, 3, 11), so G is cyclic. [4 marks]

Suppose that G is a group with 56 = 7x 8 elements. The number of Sylow
2-subgroups is either 1 or 7. The number of Sylow 7-subgroups is either 1
or 8. If the Sylow 7-subgroup is not normal, there are 8 Sylow 7-subgroups.
In this case, the intersection of any two of these distinct subgroups would



(by Lagrange’s theorem) intersect in the identity element, giving in total 48
elements of order 5, and only leaving 7 non-identity elements of G to be
distributed in the Sylow 2-subgroups. Since a Sylow 2-subgroup has 7 non-
identity elements, it follows that there could only be one Sylow 2-subgroup.
We deduce that G either has a normal Sylow 7-subgroup or has a normal
Sylow 2-subgroup. [5 marks|
Finally, if G is the dihedral group D(6), G has 12 elements, so has Sylow
2 subgroups and Sylow 3 subgroups. The number of Sylow 3-subgroups is 1
or 4. The elements of G are powers of a or ba’ (all of order 2), so only a?
and a* have order 3. This means that there is a unique Sylow 3-subgroup.
The number of Sylow 2-subgroup is one or three, each containing 3 non-
identity elements. There are 7 elements in G of order 2 (six of the form ba’
and a®). Thus, there must be more than one Sylow 2-subgroup, so that there
are 3 sylow 2-subgoups.
[5 marks]

8. The Jordan-Holder Theorem says that any two composition series of a
group are isomorphic. [1 mark]

A composition series is a finite series of subgroups, each normal in the
next

G=Go>G > -Gy ={1}

which can not be refined without repeating terms. [1 mark]
Two composition series are isomorphic if there is a bijection between the
quotient groups in the respective series so that corresponding quotient groups
are isomorphic. [1 mark]
If H/K has prime order p, a normal subgroup L of H with K < L < H
would give rise to a normal subgroup of H/K. Since H/K has prime order,

so L is either H or K.
[3 marks]

(a) Let G be a cyclic group with 8 elements generated by = (so z® = 1),
Then (z?) is a subgroup of G with 4 elements which is normal since G is
abelian. Then (z*) is a subgroup of (z2) of index 2 (and so is normal). It
follows from our basic lemma that a composition series for G is

G > (2%) > (z") > {1},

[3 marks]



(b) Now let G be the dihedral group D(3) with generators a of order 3
and b of order 2. Then K = (a) has three elements and is a normal subgroup
of G since its index is 2. K has prime order, we again use our basic result to
obtain a composition series

G>K>{1}.

[2 marks]

(c) Next, let G be a group with 35 elements. The number of Sylow 5-
subgroups in G is 1 mod 5 and divides 35, so is one. Thus this subgroup
S, say, is a normal subgroup of G. Because 5 is prime, S has no non-trivial
proper subgroup and since S has index 7 in GG, no subgroup of G lies between
G and S, so the series

G>S>{1}

is a composition series.
[5 marks]|

(d) Now let G be the dihedral group D(8). The element a generates a
subgroup with 8 elements which has index and so is normal. We can then
use the composition series for part (1) to obtain the composition series

D(8) > (a) > (a”) > (a") > {1}.

This is a composition series since the indices are all equal to the prime 2,
and all steps are normal since all have index 2.
[4 marks]
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