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Solutions

1. A group is a set G together with an operation ◦ satisfying the following
axioms:

(G1) for any x, y in G, x ◦ y is in G,

(G2) for any x, y, z in G, (x ◦ y) ◦ z = x ◦ (y ◦ z),

(G3) there is an element e in G such that for any element g in G, e◦g = g◦e = g,

(G4) for any element g in G there is an element g∗ in G with g ◦ g∗ = g∗ ◦ g = e.
[4 marks]
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Writing the given permutation in cycle notation, it is clear that π = (1324) and
so π−1 = (1423). The condition πρ = ρπ−1 can now be checked for each element
of {1, 2, 3, 4}, so given that ρ(1) = 1:

ρ(4) = ρ(π−1(1)) = π(ρ(1)) = π(1) = 3.

Similarly,
ρ(2) = ρ(π−1(4)) = π(ρ(4)) = π(3) = 2

and
ρ(3) = ρ(π−1(2)) = π(ρ(2)) = π(2) = 4.

It follows that

ρ =

(

1 2 3 4
1 2 4 3

)

= (34).

[5 marks]

Now let G = 〈π, ρ〉. Then the four powers of π are clearly in G together with
their products with ρ. Thus G has at least 8 elements: identity e, π = (1324),
π2 = (12)(34), π3 = (1423), ρ = (34), ρπ = (14)(23), ρπ2 = (12) and ρπ3 =
(13)(24). [3 marks]

In order to show that G consists of precisely these 8 elements, we must show that
these elements do indeed form a group, since we have already seen that the group
generated by the permutations π and ρ contains at least these 8 permutations.
To establish this, we need to do something equivalent to calculating the multi-
plication table for the elements. To calculate the multiplication table we can use
the equations π4 = e, ρ2 = e and πρ = ρπ−1 = ρπ3. The table is

e π π2 π3 ρ ρπ ρπ2 ρπ3

e e π π2 π3 ρ ρπ ρπ2 ρπ3

π π π2 π3 e ρπ3 ρ ρπ ρπ2

π2 π2 π3 e π ρπ2 ρπ3 ρ ρπ
π3 π3 e π π2 ρπ ρπ2 ρπ3 ρ
ρ ρ ρπ ρπ2 ρπ3 e π π2 π3

ρπ ρπ ρπ2 ρπ3 ρ π3 e π π2

ρπ2 ρπ2 ρπ3 ρ ρπ π2 π3 e π
ρπ3 ρπ3 ρ ρπ ρπ2 π π2 π3 e

The table shows closure, identity and inverses. Since permutations are maps and
are therefore associative under composition, we have shown that the 8 elements
form a group and so this is the group generated by π and ρ. [Of course any
alternative way to enumerate the group elements or express the table will attract
full marks.] [6 marks]

Finally, we need to find a non-identity element of G for which the corresponding
row of the table is equal to the corresponding column of the table. A visual
inspection shows that we can take z to be π2. [2 marks]
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2. First, we show that the equation does have a solution by setting x = u−1v
so that

ux = u(u−1v) = (uu−1)v = ev = v

using (G2), (G4) and (G3) respectively. Now the solution is unique because
if x1 and x2 would be two solutions of the equation, then ux1 = ux2 = v.
Multiplying the equation ux1 = ux2 by u−1 on the left gives u−1(ux1) = u−1(ux2).
Now using (G2), (u−1u)x1 = (u−1u)x2. Then using (G4), ex1 = ex2. Finally,
using (G3), x1 = x2. [4 marks]

Now let G be a cyclic group of order 30 generated by an element g. The ele-
ments of G are e, g, g2, . . . , g29. The equation x5 = e has 5 solutions in G, they
are elements of the form gk with k divisible by |G|

5
= 6, i.e. e, g6, g12, g18, g24.

The equation x15 = e has 15 solutions in G, they are elements of the form gk

with k divisible by |G|
15

= 2, i.e. gk with even k. The equation x6 = e has 6

solutions in G, they are elements of the form gk with k divisible by |G|
6

= 5,
i.e. e, g5, g10, g15, g20, g25. The equations x15 = e and x6 = e have three com-
mon solutions, they are elements of the form gk with k divisible by 2 × 5 = 10,
i.e. e, g10, g20. [4 marks]

Now let G be the dihedral group D(10). We use the notation explained before
question 1. The solution to ba8x = a2 is x = (ba8)−1a2 = a−8b−1a2. The ele-
ments a and b are of orders 10 and 2 respectively, hence a−8 = a2 and b−1 = b,
so x = a2ba2. Using ab = ba−1 we obtain

x = a2ba2 = a(ab)a2 = a(ba−1)a2 = aba = (ab)a = (ba−1)a = b.

[3 marks]

Next consider the equation ax = xa−1. Using ab = ba−1 we see that the element b
is a solution of this equation. There are no solutions of this equation among the
powers of a because they commute with a: For x = ak, ax = ak+1, xa−1 = ak−1.
So we consider x = ba, then ax = a(ba) = (ab)a = (ba−1)a = b and xa−1 =
baa−1 = b, so ba is another solution. [In fact the elements bak for k = 2, . . . , 9
are the others.] [3 marks]

Finally the equation ux5 = v is equivalent to the equation x5 = u−1v. To
solve x5 = u−1v, work out g5 for all g in G: (ak)5 = a5 for odd k, (ak)5 = e
for even k, (bak)5 = bak for all integer k. We see that the element e has 5 fifth
roots e, a2, a4, a6, a8 in G, the element a5 has 5 fifth roots a, a3, a5, a7, a9 in G, the
element bak with integer k has a unique fifth root bak in G, while the elements ak

for k = 1, 2, 3, 4, 6, 7, 8, 9 do not have fifth roots in G at all. So the given equation
has no solutions in G if v = uak with k = 1, 2, 3, 4, 6, 7, 8, 9, has five solutions
in G if v = u or v = ua5, and has a unique solution otherwise. [It is sufficient to
provide one example of u and v such that the solution of the equation ux5 = v is
not unique to get the full marks.] [6 marks]
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3. A subgroup of a group G is a non-empty subset H of G which is itself a
group under the same operation as that of G. [Alternatively if H is a subset such
that eG ∈ H and H is closed under products and inverses.] [2 marks]

Lagrange’s theorem states that if H is a subgroup of a finite group G then |H|
divides |G| and the number |G : H| of distinct cosets of H in G is equal |G|/|H|.

[2 marks]

A subgroup H of a group G is said to be cyclic generated by g if g is an element
of H and every element of H is a power of g. [1 marks]

Let G be a group with p elements. Let x be any non-identity element of G.
Using Lagrange’s theorem, the order of the cyclic subgroup 〈x〉 of G is a divisor
of |G| = p. This implies |〈x〉| = 1 or |〈x〉| = p, since the number p is prime. But
|〈x〉| 6= 1 by choice of x, hence |〈x〉| = p = |G|, so G = 〈x〉 and so G is cyclic.

[4 marks]

Let H be a subgroup of G with p elements and K be a subgroup of G with
q elements, where p and q are distinct prime numbers. Since H∩K is a subgroup
of H and H has p elements, the number of elements in H ∩ K divides p. Since
H∩K is a subgroup of K and K has q elements, the number of elements in H∩K
divides q. Since p and q are distinct prime numbers, the only possibility is
for H ∩ K to contain just one element, so H ∩ K = {e}.

[2 marks]

The alternating group A(4) contains, by definition, only even permutations on
4 symbols. There are 12 such permutations: the identity, which is of order 1,
eight 3-cycles (123), (132), (124), (142), (134), (143), (234), (243), which are
of order 3, and three products of a pair of disjoint 2-cycles (12)(34), (13)(24),
(14)(23), all of order 2. [4 marks]

Our calculations show that each non-identity element of A(4) has order 2 or 3.
Thus if H is a cyclic subgroup of A(4) generated by an element g, say, then g has
order 1, 2, or 3, so H consists of 1, 2, or 3 elements. Thus every cyclic subgroup
of A(4) has order 1 or a prime order. [2 marks]

Let H and K be cyclic subgroups of A(4). Let p = |H| and q = |K|. We
know that p, q ∈ {1, 2, 3}. Since H ∩ K is a subgroup of both H and K, the
order |H ∩ K| is by Lagrange’s theorem a common divisor of p and q. The
integers p and q are 1 or prime. If p 6= q, then the only (positive) common divisor
of p and q is 1, so H∩K = {e}. If p = q, then there are two common divisors of p
and q, they are 1 and p. Thus |H ∩ K| is either 1, in which case H ∩ K = {e},
or p, in which case H ∩ K = H = K. [1 marks]

Let H be a subgroup of S(4) with A(4) ⊂ H. Using Lagrange’s theorem, the order
of the subgroup H divides |S(4)| = 24. On the other hand, |H| ≥ |A(4)| = 12
since A(4) ⊂ H. There are only two divisors of 24 larger than 12, they are 12
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and 24 and correspond to H = A(4) and H = S(4).

[2 marks]
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4. Suppose first that aH = bH. Then, since e ∈ H, a = ae ∈ aH = bH.
Since a ∈ bH, there is an element h ∈ H such that a = bh. Then a−1b =
h−1 ∈ H. Conversely, if a−1b is in H and ah1 with h1 ∈ H is in aH, then
ah1 = b(b−1ah1) = b((a−1b)−1h1) = bh2 with h2 = (a−1b)−1h1 ∈ H, so each
element ah1 of aH is in bH, so aH ⊂ bH. On the other hand, if bh1 with h1 ∈ H
is in bH, then bh1 = a(a−1bh1) = a((a−1b)h1) = ah2 with h2 = (a−1b)h1 ∈ H, so
each element bh1 of bH is in aH, so bH ⊂ aH. We deduce that aH = bH.

[5 marks]

A subgroup N is a normal subgroup of G if gN = Ng for all g in G. [Any
other correct definition of a normal subgroup will attract full marks, for example:
A subgroup N is a normal subgroup of G if gng−1 is an element of N for any n
in N and g in G.]

[1 marks]

Now let G be the dihedral group D(10). The set H = {e, a2, a4, a6, a8} is a
subgroup of G because it is the subgroup generated by a2. [Alternatively, one
could construct the multiplication table for H.] [1 marks]

The distinct left cosets of H in G are:

H = eH = {e, a2, a4, a6, a8}, aH = {a, a3, a5, a7, a9},

bH = {b, ba2, ba4, ba6, ba8}, baH = {ba, ba3, ba5, ba7, ba9}.

[4 marks]

The right cosets of H in G are:

He = H = eH, Ha = aH, Hb, Hba.

Since ab = ba9, an easy check shows that

Hb = bH and Hba = baH.

[2 marks]

Every left coset of H in G is a right coset of H in G, so H is a normal subgroup
of G. [1 marks]

The elements of G/H are the four cosets {H, aH, bH, abH}. Now

H2 = HH = H, (aH)2 = aHaH = a2H = H,

(bH)2 = bHbH = b2H = H, (baH)2 = baHbaH = (ba)2H = eH = H.

Since every non-identity element of G/H has order 2, the group G/H is not
cyclic. [3 marks]

Finally, as all non-identity elements of the group G/H are of order 2, we have
(gH)2 = H for any element g of G, hence g2H = (gH)2 = H, so g2 is an element
of H. [3 marks]
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5. Let f be a map between the groups (G, ◦) and (H, ∗). Then f is a homo-

morphism if for all a, b in G, f(a ◦ b) = f(a) ∗ f(b). [1 marks]

The kernel of f is ker(f) = {g ∈ G | f(g) = eH} [1 marks]

and the image of f is

im(f) = {h ∈ H | h = f(g) for some g ∈ G}.

[1 marks]

The homomorphism theorem states that if f is a homomorphism from G to H
then

• imf is a subgroup of H,

• kerf is a normal subgroup of G,

• G/kerf ∼= imf . [3 marks]

Let G be the set of invertible 2 × 2 matrices of the form

A =

(

a b
b a

)

,

where a and b are real numbers. Before checking for the homomorphism property,
it might be convenient to obtain the formula for the product of two elements in G:

For A =

(

a b
b a

)

and B =

(

r s
s r

)

:

AB =

(

a b
b a

)(

r s
s r

)

=

(

ar + bs as + br
as + br ar + bs

)

.

(1) Let H be the group of all real numbers under addition and f be given
by f(A) = a. To check if f is a homomorphism, we need to see if f(AB) =
f(A) + f(B) since the operation in H is addition. From our formula for AB,
we see that f(AB) = ar + bs. However f(A) = a and f(B) = r, so
f(A) + f(B) = a + r, i.e. f(AB) 6= f(A) + f(B) in general (for example
if a = r = 2 and b = s = 1). Thus f is not a homomorphism. [4 marks]

(2) Let H be the group of non-zero real numbers under multiplication and h be
given by h(A) = a2 − b2. To check if h is a homomorphism, we need to see
if h(AB) = h(A)h(B) since the operation in H is multiplication. From our
formula for AB, we see that

h(AB) = (ar+bs)2−(as+br)2 = (a2r2 +b2s2 +2abrs)−(a2s2 +b2r2 +2abrs),
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hence
h(AB) = a2r2 + b2s2 − a2s2 − b2r2.

On the other hand, h(A) = a2 − b2 and h(B) = r2 − s2, so

h(A)h(B) = (a2 − b2)(r2 − s2) = a2r2 − a2s2 − b2r2 + b2s2 = h(A)h(B).

[Alternatively, notice that h(A) = det(A) and use det(AB) = det(A) det(B).]
Thus h is a homomorphism. [5 marks]

The kernel ker(h) of h is

{(

a b
b a

)

∈ G | a2 − b2 = 1

}

.

The image im(h) is the whole of H. [3 marks]

It follows by the homomorphism theorem that G has a normal subgroup N =
ker(h) with G/N isomorphic to ker(h) = H. The group G/N is abelian since
the group H is abelian. [2 marks]
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6. If a permutation is an n-cycle, then π is even when n is an odd integer and
π is odd when n is an even integer. For a general permutation, we use the fact
that the sign of a product of permutations is multiplicative. [2 marks]

When π is written as a product of disjoint cycles, the order of π is the least
common multiple of the lengths of disjoint cycles of π. [1 marks]

In disjoint cycle notation, the given permutations are written as

π = (12)(34)(56)(78)(9 10) and ρ = (1 10)(24689753).

The permutation π is a product of five odd cycles, hence sign(π) = (−1)5 = −1,
so π is odd, and π has order 2. The permutation ρ is a product of two odd cycles,
hence sign(ρ) = (−1)2 = 1, so ρ is even, and ρ has order 8. [4 marks]

The identity permutation is even (as a product of disjoint 1-cycles). If permu-
tations π and ρ are even, then their product πρ is even. If a permutation π
is even, then π−1 is also even, since π−1 has the same set of lengths of disjoint
cycles. Thus the alternating group A(n) is a subgroup of S(n). It is a subgroup
of index 2, hence normal. [4 marks]

The identity permutation is not odd. The set of odd permutations is also not
closed because the product of two odd permutations is even. [1 marks]

Now suppose that a permutation π has odd order k. If π were odd, sign(πk) =
(sign(π))k = (−1)k would be −1. But πk = e, hence sign(πk) = sign(e) = 1, so
this contradiction shows that π is even. [4 marks]

An example of an even permutation of order 2 is (12)(34). An example of an
even permutation of order 3 is (123). [2 marks]

If π is any element of S(n), then sign(π2) = (sign(π))2 = 1, so π2 is even.

[2 marks]
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7. Let p be a prime and G be a finite group of order pkn, where p does not
divide n. Then

(a) G has Sylow p-subgroups (subgroups of order pk),

(b) the number of these is congruent to 1 mod p.

(c) if P is a Sylow p-subgroup and Q is any p-subgroup, there is an element g
of G such that gQg−1 ⊂ P ,

(d) any two Sylow p-subgroups are conjugate, the number of these divides |G|.

[4 marks]

If there is precisely one Sylow p-subgroup P , then every conjugate of P must be
equal to P , so P is a normal subgroup. If P is normal, then every conjugate of P
is equal to P , so each Sylow p-subgroup must be equal to P . [2 marks]

(1) Suppose that G is a group with 35 = 5 × 7 elements. The number of Sylow
5-subgroups is 1 mod 5 and divides 35, so is one. The number of Sylow
7-subgroups is 1 mod 7 and divides 35, so is also one. Thus G has a unique
Sylow 5-subgroup, say P , and a unique Sylow 7-subgroup, say Q, and the
subgroups P and Q are both normal in G. The subgroup P contains all
4 non-identity elements of G of order 5. The subgroup Q contains all 6 non-
identity elements of G of order 7. The only other divisor of 35 is 35. It follows
by Lagrange that there must be an element of G of order 35, so G is cyclic.

[4 marks]

(2) The group G has 56 = 23×7 elements, so has Sylow 2-subgroups (of order 8)
and Sylow 7-subgroups (of order 7). The number of Sylow 2-subgroups is
odd and divides 56, so is either 1 or 7. The number of Sylow 7-subgroups is 1
mod 7 and divides 56, so is either 1 or 8. Let us assume that there are 8 (not-
normal) Sylow 7-subgroups. If P and Q are distinct Sylow 7-subgroups, the
number of elements in their intersection is smaller than 7, but this number
divides |P | = |Q| = 7 by Lagrange’s theorem, hence P ∩ Q = {e} for any
two distinct Sylow 7-subgroups of G. Thus the total number of non-identity
elements in the union of those 8 Sylow 7-subgroups is 8 × 6 = 48. Hence
there are no more than 56− 48− 1 = 7 non-identity elements in the union of
all Sylow 2-subgroups of G. Since any Sylow 2-subgroup of G has 8 elements
(and 7 non-identity elements), it follows that there can be only one Sylow
2-subgroup. We deduce that G has either a normal Sylow 7-subgroup or a
normal Sylow 2-subgroup. [5 marks]

(3) Finally suppose that G is the symmetric group S(4) of permutations on
4 symbols. The group G has 24 = 23 × 3 elements, so has Sylow 2-subgroups
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(of order 8) and Sylow 3-subgroups (of order 3). The number of Sylow 3-
subgroups is 1 mod 3 and divides 24, so is either 1 or 4. There are 8 elements
of order 3 in G (cycles of length 3), and since a Sylow 3-subgroup of G has
3 elements, these 8 elements of order 3 must be distributed over 4 subgroups.
The number of Sylow 2-subgroups is odd and divides 24, so is either 1 or 3.
Any element of order 2 generates a cyclic subgroup of order 2. Any subgroup
of order 2 is contained in a Sylow 2-subgroup. Thus any element of order 2
is contained in a Sylow 2-subgroup. There are 9 elements of order 2 in G
(6 transpositions and 3 products of two disjoint transpositions), and since
a Sylow 2-subgroup of G has 8 elements, these 9 elements of order 2 must
be distributed over 3 subgroups. Thus the group G = S(4) has 4 Sylow
3-subgroups and 3 Sylow 2-subgroups. [5 marks]
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8. The Jordan Hölder Theorem says that any two composition series of a
group are isomorphic. [1 marks]

A composition series is a finite series of subgroups, each normal in the next

G = G0 > G1 > · · · > Gk = {e},

which can not be refined without repeating terms. [1 marks]

Two composition series are isomorphic if there is a bijection between the
quotient groups in the respective series so that corresponding quotient groups
are isomorphic. [1 marks]

If H/K has prime number of elements p, a normal subgroup L of H with K <
L < H would give rise to a normal subgroup of H/K. Since H/K has prime
number of elements, L is either H or K. [3 marks]

(1) Let G be a cyclic group with 4 elements generated by an element x (of
order 4). Then 〈x2〉 is a subgroup of G. The subgroup 〈x2〉 is normal since
G is abelian. It follows (since 2 is prime) that a composition series for G is

G > 〈x2〉 > {e}.

[2 marks]

(2) Now let G be a non-cyclic group with 4 elements and let y be a non-identity
element of G (of order 2). Then 〈y〉 is a subgroup of G. The subgroup 〈y〉 is
normal since G has index 2. It follows (since 2 is prime) that a composition
series for G is

G > 〈y〉 > {e}.

[2 marks]

(3) Next, let G be a group with 21 elements. The number of Sylow 7-subgroups
of G is 1 mod 7 and divides 21, so is one. Thus this Sylow 7-subgroup S, say,
is a normal subgroup of G. Because 7 is prime, S has no non-trivial proper
subgroups. Since S has index 3 in G, no subgroup of G lies between G and S,
so the series

G > S > {e}

is a composition series. [4 marks]

(4) Now let G be the symmetric group S(3). The alternating group A(3) of
even permutations has 3 elements and so has index 2 in G and is a normal
subgroup of G. Because 3 is prime, A(3) has no non-trivial proper subgroups.
Since A(3) has index 2 in G, no subgroup of G lies between G and A(3), so
the series

S(3) > A(3) > {e}

is a composition series. [3 marks]
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(5) We finally turn to the dihedral group D(6). We use the notation explained
before question 1. The subgroup 〈a〉 is cyclic of order 6. This subgroup
is normal because it is of index 2. Also 〈a2〉 is a subgroup of 〈a〉. The
subgroup 〈a2〉 is normal in 〈a〉 because 〈a〉 is abelian, so

G > 〈a〉 > 〈a2〉 > {e}

is a composition series. This series can not be refined because the factors are
of prime order. [3 marks]
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