Math 343 2003 Solutions.

1. (a) A group is a set G with a law of composition satisfying the following
axioms:

G1) for any z,y € G, xy is in G,

)

G2) for any z,y, z in G, z(yz) = (zy)z,

G3) there is an element 1 in G such that for all g € G, g1 = g = 1g,
)

(
(
(
(G4 givlen an element g € G, there is an element g~! of G with gg~! =1 =
9 °9-

[4 marks]
Writing the given permutations in cycle notation, it is clear that the powers of
(1342) (namely (1342),(14)(23),(124 3) and the identity permutation)
are in G, together with the products of these four permutations by (2 3).
Thus G has at least 8 elements:

16,(1342),(14)(23),(1243),(23),(13)(24),(14), and (1 2)(3 4)

[3 marks]
In order to show that GG consists of precisely these 8 elements, we must
show that these elements do indeed form a group, since we have already
seen that the group generated by the permutations contains at least these 8
elements. To establish that the elements do indeed form a group, we need
to do something equivalent to calculating the multiplication table for the
elements. For convenience denote (1 3 4 2) by 7 and (2 3) by p, so that the
8 elements are 1, 7,72, 72 and p, wp, 72p, 73p. The table then is

1 7 @ 7w p wp wp 7p

1 1 7 @ 7w p wp wp Tp
| w® 7w 1 7w wp ®p p
| 7 7 1 7w owp mwp  p wp
3| wd T 7w wp  p mp Tp

1

pl p ®p wp wmp 1 w 7 1

p m™p wp w 1 7w 7

wp|mp wp p mp w T 1 7z
™ 1

2
o\ mp wp wp  p W w?




The table shows closure, identity and inverses. Since permutations are maps
and are therefore associative under composition, we have shown that the 8
elements form a group and so this is the group generated by 7 and p. [Of
course any alternative way to enumerate the group elements or express the
table will attract full marks.]
[8 marks]|
As for the orders of the elements of G, we can use the table (say) to see
that m and 7 each have order 4, while each other non-identity element of G
has order 2.
[3 marks]
Finally, we need to find a non-trivial element of G for which the corre-
sponding row of the table is equal to the column for that element. A visual
inspection shows that we can take z to be 72.
[2 marks]

2. First, we show that the equation does have a solution by setting z = u~!v
so that
ur = u(u ) = (uu v =1v =v

using (G2), (G4) and (G3) respectively. Now the solution is unique because
if uz; = v and uzy = v then uz; = uzy so multiplying on the left by u=!
gives u !(uz) = u !(uxs). now using associativity, (v tu)z; = (u tu)z,.
Then the inverse axiom implies that 121 = 1z, so finally the identity axiom

shows that x; = z+.

[6 marks]
If G = D(4), the solution to a*z = ba is
r = (a)"%ba = a*ba = aaba
a(ab)a = aba 'a = ab=ba ' = ba®.
[3 marks]

To calculate the square of elements in D(4)
’=1,a>=ad*(a®)?=d"=1,(a®)’ = a® = a”.
Each of the other 4 elements of G has the form ba’ and
(ba')? = ba'ba’ = bba"a’ = b? = 1,
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and so each has order 2.
[2 marks]
From the list of squares of elements of GG, we see that a and a® are both
solutions of 2 = a?, so this equation has a solution, but not a unique solution.
[2 marks]
If 22 = b had a solution, we could find an z whose square is b. However
we have seen that the square of 1,a?, b, ba, ba? and ba® are all 1, whereas the
square of a and a® are both a2, so the equation has no solution.
[2 marks]
It x were a power of a, then xa would be a power of a, while bz could
not be a power of a. On the other hand, if z were of the form ba’, then bz
would be a power of @ while za would be b times a power of a which is again
impossible, so the equation has no solutions.
[5 marks]

3. A subgroup of a group G is a non-empty subset of G which is itself a group
under the same law of composition which holds in the group G. A subgroup
H is said to be cyclic if there is an element h in H such that each element
of H is a power of our fixed h.
[4 marks]
Lagrange’s Theorem states that if |[H| is a subgroup of a finite group G
then |H| divides |G| and |G|/|H]| is equal to the number of distinct cosets of
H in G.
[2 marks]
If G has order p, let x be any non-trivial element of G, then [(z)| has
order dividing p. Since this order is not 1 by choice, it must be p, so G = {(x)
and so G is cyclic.
[4 marks]
For D(6), a has order 6, a® has order 3, a® has order 2, a* order 3 and a®
has order 6. All elements of the form ba’ have order 2, since

ba'ba' = b(a'b)a’ = ba ‘o’ =1

[Alternatively all elements like ba’ correspond to reflections in the dihedral
group , so have order 2.] Since D(6) has an element a of order 6, the subgroup
generated by a is a cyclic subgroup with 6 elements.

[5 marks]



The elements of A(4) are 1 (order 1), (12)(34),(13)(24)(14)(23) (all of
order 2) together with 8 three cycles, obtained by leaving out one of the four
symbols, and considering the two possible cycle orientations (all of order 3).
Thus each non-identity element of G' has order 2 or 3. Thus if H is a cyclic
subgroup of G, generated by g, say, then g has order 2 or 3, so |H| =2 or 3.
Thus every cyclic subgroup of G' has prime order.

[5 marks]

4. Suppose that xH, yH are two left cosets of H in G and suppose that these
cosets are unequal. If z were an element in both *H and yH, then z = xh
and z = yh; for some h,hy € H. Thus zh = yhy, so y~'z = hyh~!. Then
y~ !z is an element hy, say of H since H is a subgroup. It then follows that
xH = yH contrary to assumption. We deduce that if xH,yH are unequal
they can have no elements in common.
[4 marks]
A subgroup N is a normal subgroup of G if, for all n in N and g in G,
gng~ ! is an element of G.
[1 mark]
Now let G be the dihedral group D(3), and H be the subgroup with two
elements 1 and b. Since |H| = 2, there are three distinct left cosets and since

H, aH = {a,ab=0ba’}, o’H = {d? a’b = ba},
this is the complete list of (left) cosets. The right cosets are
H, Ha={a,ba}, Ha*={da? ba’}.

Note that aH is not equal to Ha.
[5 marks]
Now let K be the subgroup with the three elements {1,a,a?}. Since H
has index 2 in GG, H is a normal subgroup of G and so is a normal subgroup.
The quotient group G/K has order 2 and so is cyclic. [4 marks]
First of all N is a subgroup because 0 (the identity element ) is a multiple
of n, if r and s are multiples of n, say r = kn and s = In then r+s = kn+in =
(k 4+ D)n and finally —r = —(kn) = (—k)n. Every subgroup of Z is normal
because Z is abelian.
[3 marks]
When n = 10, two integers r, s are in the same coset of Z precisely when
r — s is a multiple of 10, so that » — s ends in a zero and r, s have the same
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last digit. Thus the 10 cosets of NV are ten sets of integers. Each set being
those ending in the same digit (the congruence classes modulo 10).
[3 marks]

5. Let 0 : (G,0) — (H,*) be a group homomorphism. Then for all z,y in G,
O(zoy) =0(x)*0(y). [1 mark]
It follows that §(1g) * 8(g) = 6(g) for all g € G, so 0(1¢) is the identity
element of H (by uniqueness) as required.
Also 6(g) * 6(h) = 6(1g) = 1y, so B(h) is the inverse of #(g). [2 marks]
We have
ker 0 ={g€ G:0(9) =1g}

[1 mark]
and
im0 = {h € H:h=0(z) for some z € G}.

[1 mark]
The homomorphism theorem states that if # is a homomorphism from G
to H then

e im f is a subgroup of H,;
e ker f is a normal subgroup of G and
e G/ ker § = im 6.

[3 marks]
Before checking for the homomorphism property, it might be convenient
to obtain the formula for the product of two element A, B in G:

a; Qg as b1 b2 b3 a1b1 a2b1 + bQCLl a1b3 + GQbQ + (1;3[)1
0 a; Qs 0 b1 bg = 0 a1b1 Ulgbl + b2a1
0 0 a 0 0 b1 0 0 albl

(a) To check if 6, is a homomorphism, we need to see if 6,(A)0,(B) =
6:(AB). From our formula for AB, we see that this is so (6; is a homomor-
phism). Its image is the whole group (every real number can occur on the
diagonal of an element of G) and its kernel K is the subgroup of G consisting
of those matrices in G with 1 down the main diagonal (so a; = 1).

[4 marks]



(b) A similar argument for f; (remembering that the target group is a
group under addition), shows that we need to check if a1by + asb; is equal to
a1+ b;. This is not the case (take b = 0 = ay), so 6 is not a homomorphism.

[2 marks]

(c) the required check for this case is that ab3 + asbs + aszby = ay + by, so
this also fails to be a homomorphism (take by = by = 0 = a3).

[2 marks]

For the final part, the map of case (a) is a homomorpism, and its image
is abelian. Thus, by the homomorphism theorem, G/K is isomorphic to an
abelian group. Since K is a normal subgroup of (G, it only remains to see if
the subgroup K is abelian. Our general formula for AB would then give

1 as + b2 as + agbz + b3
0 1 ag + b2
0 0 1

Since this is symmetric in the a’s and b’s, K is an abelian group as required.
[4 marks]

6. The conjugacy class of g is the set of distinct elements of G of the form
2 lgz as x varies over G. The centralizer of g is the set of elements of G
which commute with g so

Colg)={z€G:2g=gr}={r€G:g=a g2}

[2 marks]
To show that Cg(g) is a subgroup, it is clear that the identity element
commutes with g, if z,y € Cg(g) then zg = gz and yg = gy, so

(zy)g = z(yg) = z(gy) = (zg)y = (92)y = g(zy)

so zy € Cg(g). Also if z € Cg(g), then zg = gz so ¢ = v7'Gz and so
gr ' =219, s0 x7! is also in Cg(g). Thus Cg(g) is a subgroup of G.

[3 marks]

The required result is that the number of distinct elements in the conju-

gacy class of G is equal to |G|/|Ca(g)|- [2 marks]



For the group D(4) we first observe that a?b = ba 2. Since a has order 4,
a’> = a2, s0 bisin Cg(a?). Since a is also in this group, every element of G
is in Cg(a?), so G = Cg(a?), This means that a? has only one conjugate.
[3 marks]
In this same group, now consider C(b): we have just seen that a? com-
mutes with b, as does b. There are therefore at least 4 elements of G which
commute with b: 1,b,a?, ba?. Since the centralizer is a subgroup and a does
not commute with b, |Cg(b)| = 4 and b has two conjugates. Clearly b is a
conjugate of b, so let’s work out a~'ba:

a"'ba = a’ba = a’aba = a*ba"'a = a®b.

Since a? commutes with b, the two conjugates of b are b and ba?.
[3 marks]
To show that (z71gx)¥ = 2~ 1gFx, first note that the anchor step is trivial.
Then

(g0 = (7' ga)¥ (@ 'ga) = o~ gba(a~ go) = 570
as required. [2 marks]
Now suppose that g has order k. Then ¢* = 1, so (v 'gx)¥ = 2 1g*z =
z7 11z = 1. It follows that the order of 7 gz divides k. Conversely, if z71gz
has order I, then 1 = (z7'gz)! = 27 '¢'z, so ¢' = 1, and so k divides 1. It

follows that k = . [3 marks|
If there is only element, z, say in G with order 2, then any conjugate
7' zx must equal 2, so zx = zz for all z in G. [2 marks]

7. Let p be a prime and G be a finite group of order p*n where p does not
divide n. Then:

(1) G has Sylow p-subgroups (subgroups of order p¥),

(2) the number of these is congruent to 1 mod p,

(3) if P is a Sylow p-subgroup and () is any p-subgroup, there is an
element ¢ of G such that ¢gQg~! C P,

(4) any two Sylow p-subgroups are conjugate, the number of these divides
|G [4 marks]

If there is precisely one Sylow p-subgroup P, then every conjugate of P
must be equal to P, so P is a normal subgroup. If P is normal, then every
conjugate of P is equal to P, so each Sylow p-subgroup must equal P.
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[2 marks]
Suppose that G is a group of order 15=3 x 5 the number of Sylow 3-
subgroups is 1,4,7,10,,... and divides 15, so is 1. The number of Sylow 5
subgroups is 1,6, 11, 16, ... and divides 15 so is also 1. Thus G has a unique
Sylow 3-subgroup, P, say, and a unique Sylow 5-subgroup @), say. These are
each normal with P containing all 2 non-identity elements of G of order 3
and () containing all 4 non-identity elements of G' of order 5. It follows by
Lagrange that there must be elements of G of order 15 (the only other divisor
of 15), so G is cyclic. [4 marks]
Now suppose that G is a group with 80=5 x 16 elements. The number
of Sylow 2-subgroups is either 1 or 5. The number of Sylow 5-subgroups is
either 1 or 16. If the Sylow 5-subgroup is not normal, there are 16 Sylow 5-
subgroups. In this case, these distinct subgroups would pairwise intersect in
the identity element, giving in total 64 elements of order 5, and only leaving
15 non-identity elements of G' to be distributed in the Sylow 2-subgroups.
Since a Sylow 2-subgroup has 15 non-identity elements, it follows that there
could only be one Sylow 2-subgroup. We deduce that G either has a normal
Sylow 5-subgroup or has a normal Sylow 2-subgroup. [4 marks|
Finally, if G is the symmetric group on 4 symbols, G' has 24 elements,
so has Sylow 2 subgroups and Sylow 3 subgroups. The number of Sylow
3-subgroups is 1 or 4. There are 8 elements of order 3 in S(4), and since a
Sylow 3-subgroup has three elements, these 8 elements must be distributed
over 4 subgroups. The number of Sylow 2-subgroup is 1 or 3. Suppose there
was a unique Sylow 2-subgroup, N say. If g were an element of order 2 in G,
then (g) would be a subgroup of N, so ¢ would be in N. However G has 6
transpositions together with 3 elements of cycle type 22, so this is impossible
and G has four Sylow 3-subgroups and 3 Sylow 2-subgroups.
[6 marks]

8. The Jordan-Holder Theorem says that any two composition series of a
group are isomorphic. [1 mark]

A composition series is a finite series of subgroups, each normal in the
next

G=Go>G >---Gp={1}

which can not be refined without repeating terms. [1 mark]
Two composition series are isomorphic if there is a bijection between the
quotient groups in the respective series so that corresponding quotient groups
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are isomorphic. [1 mark]
If H/K has prime order p, a normal subgroup L of H with K < L < H
would give rise to a normal subgroup of H/K. Since H/K has prime order,

so L is either H or K.
[3 marks]

(a) Let G be a cyclic group of order 10 generated by z (so ' = 1). Then
(z?) is a subgroup of G with 5 elments which is normal since G is abelian.
It follows (since 5 is prime) that a composition series for G is

G > (z*) > {1}

[2 marks]

(b) Now let G be the dihedral group D(4) with generators a of order 4
and b of order 2. Then K = (a) has four elements and is a normal subgroup
of G since its index is 2. Next (a?) has 2 elements and is a normal subgroup
of K because it has index 2 (or because K is abelian). Then

G>K=>(a®) > {1}

is a composition series for (G, since each term is normal in the next and all
the indices are prime (=2).
[3 marks]

(c) Next, let G be a group with 39 elements. The number of Sylow 13-
subgroups in G is 1 mod 13 and divides 39, so is one. Thus this subgroup
S, say, is a normal subgroup of G. Because 13 is prime, S has no non-trivial
proper subgroup and since S has index 3 in GG, no subgroup of G lies between
G and S, so the series

G>5>{1}

is a composition series.
[5 marks]

(d) Now let G be the symmetric group S(3). The element g = (1 2 3)
has three powers: g, ¢*> = (1 3 2) and g3 = 1 so these three powers form the
subgroup (g). This subgroup is normal since it has index 2. Thus we have a
series for G

S(3) > (9) > {1},
This is a composition series since the indices are 2 and 3 which are prime.
[4 marks]



