Math 343 2002 Solutions.

1. (a) A group is a set G with a law of composition satisfying the following
axioms:

G1) for any z,y € G, xy is in G}
G3) there is an element 1 in G such that for all g € G, g1 = g = 1g;

G4) given an element g € G, there is an element ¢=* of G with gg~' =1 =
—1
9 9

(G1)
(G2) for any z,y, z in G, z(yz) = (zy)z;
(G3)
(G4)

[4 marks]
The reason why X is not a group is that not every element of X has a
multiplicative inverse, because we did not insist that every element has non-
zero determinant, (the condition for a matrix to have an inverse).

[2 marks]
To show that G is a group, first note that

a b z y\_ [ar ay+bz

0 ¢ 0 z /) 0 cz )’
If the product of these two matrices is I then az = 1 (so x = ¢!, and a
must be non-zero), also cz = 1 (so z = ¢!, and ¢ must be non-zero). Finally,
ay + bz = 0, so that y = —bz/c. Now closure follows from the above product
rule, we are allowed to assume associativity, the identity is I and we have
just checked that the inverse of an element of G is another element of G.

[4 marks]
If A were an element of order 2, then

2
o (a b\ _(a® ab+bc) _
A_<O c) _< 0 c? =1

It would then follow that a? = ¢? = 1, so that a and ¢ are each £1. If a and
c are equal, b must be zero and the only element of order 2 arising in this
way is —I. If however a = —c then each such matrix has order 2 irrespective
of the value of b. [4 marks]



An example of an element of infinite order in G is the matrix C' =
( (1] 1 ), since C™ is the matrix ( (1] TlL ) So, to write C' in the form AB
where A, B each have order 2, use the product rule to consider the product

of two matrices
1 b 1 d
A—<O _1>andB—<0 _1),

then C will equal AB provided that d —b=1ord=1+b. [4 marks]

Finally, to find two elements to establish that G is non-abelian, we can
use our basic multiplication formula, and a little experimentation produces
many examples such as ¢ = 2, z = 3 and each of a,b, z,y are equal to 1.
Thus G is non-abelian. [2 marks]

2. A subgroup of a group G is a non-empty subset H of G which is itself a
group under the same law of composition as that of G. [Alternatively if H
is a subset such that 1 € H and H is closed under products and inverses.|
[2 marks]

Lagrange’s Theorem states that if |G| is a group of finite order and H is

a subgroup of G, then the number of distinct right (or left) cosets of H in G
is |G|/|H|. In particular then |H| divides |G]. [2 marks]
If G has order p, let = be any non-trivial element of G, then [(z)| has
order dividing p. Since this order is not 1 by choice, it must be p, so G = ()
and so G is cyclic. [3 marks|
The subsets H N K contains 15 since 1g is in both H and K. Also
products and inverses of elements in H N K are in each of H and K (since
both are subgroups). Finally, H N K is a subset of H so is a subgroup of H
and H N K is a subset of H so is also a subgroup of K . [3 marks]
If H has p elements and K has ¢ elements, then since HN K is a subgroup

of H, the number of elements in H N K divides p and since H N K is a
subgroup of K this number of elements divides ¢. Since p and ¢ are distinct
prime numbers, the only possibility is for H N K to contain just one element,
so HN K = {1}. [3 marks]
When |H| = p = |K]|, the number of elements in H N K divides p so is 1
or p. If this number were p, then HN K = Hand HNK = Kso H=K
and H, K are not distinct. [3 marks]



Finally, if G is the dihedral group of order 10, and H is a strict subgroup
of G, the number of elements in H is 1,2 or 5. It follows from the above :

if either H or K is {1}, then so is H N K,

if neither is trivial then each has prime order and so the intersection is
trivial unless H = K. [4 marks]

3. Suppose first that tH = yH. Then, since 1 € H, x1g = x € yH. Thus
x = yh for some h € H. Then y~'x = h € H. Conversely, if y"'x = h € H
and zh; € zH then, since x = yh, xhy = yhh, = yho with hy € H so
xH C yH. On the other hand, if yh; € yH, then since y = xh™' we see
that yh, = zh~th; = zhs for some hs in H. We deduce that yH C H and
conclude that xH = yH. [5 marks]

Now let G be the dihedral group D(6) and H be the set with three
elements 1, 22 and z*. The best way to check that H is a subgroup is to
produce the 3 x 3 multiplication table:

‘ 1 2% 24

1] 1 22 22
22|22zt 1
|zt 1 22

[2 marks]
Since |H| = 3, there are four distinct left cosets. However

H, zH={1,2",2"}, yH ={y,ya’,yz*} and yaH = {yz, yz*, ya°},

so this is the complete list of left cosets The first two are clearly right cosets.
Since yz? = z'y we see that yH = {y,yx? yz*} = Hy. Also we have that
Hyzx = {yz,yz? yz°} = yxH. Since every left coset is a right coset, H is a
normal subgroup of G. [5 marks]
The quotient group G/H has the four elements H,zH,yH and yxH.
However tHaxH = 2?H = H and yHyH = y?H = H, so two of these four
elements have order 2, so G/H cannot be cyclic. [3 marks]
For the final part, take A to be the subset {1, 2% z* y, yz? yz*}. Since

1 1 —2

y ety =y lazy =y layy oy =27 =2

and also 22 has order 3 while y has order 2, A is (isomorphic to) the dihedral
group with six elements, and A has index 2 and so is normal. Now let B
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be the subgroup {1,z%}. Since z® is a central element, B is normal. Then

AN B = {1} (since z* is not in A), but every element of G may be written
as a product of an element of A with an element of B. We show this for the
six elements of G' outside A:

4,3 3 3 5

v=a'2? 2* =23 2° =223 yr = (ya')a?

sy = (y)a¥; ya® = (ya?)ad.

[6 marks].

4. Let 9 : (G,0) — (H,*) be a group homomorphism. Then for all z,y in
G, ¥z oy) = I(z) *xI(y). [1 mark]
It follows that ¥(1g) * ¥(g) = ¥(g) for all g € G, so ¥(1¢) is the identity
element of H (by uniqueness) as required.
Also ¥(g) * 9(h) = ¥(1g) = 1g, so ¥(h) is the inverse of J(g). [2 marks]
We have
ker ¥ ={g€ G:9(9) =1g}

[1 mark]
and
im ¥ = {h € H : h =19(z) for some z € G}.

[1 mark]
The homomorphism theorem states that if f is a homomorphism between
groups G' and H then
) im f is a subgoup of H,

(a
(b) ker f is a normal subgoup of GG, and
(c) G/ ker f is isomorphic to im f. [3 marks]

(a) Now 0, (XY') = (ac —bd)(ab—+ bc) but this is not equal to a+b+c+d
(as an example, if b =0 but a = ¢ =d = 1 we see that 0 # 1). Thus 6, is
not a homomorphism. [2 marks]

(b) In this case
05(XY) = (ac — bd)? + (ad + be)>.

This simpifies to a?c? — 4abed + b*d? + a?d? + 4abed + b*c?, which is equal to
(a® +b?)(c® + d?), so By is a homomorphism. Its kernel is the set of elements
of G with a? +b? = 1 and its image is the set of positive real numbers.

[5 marks]|



(c) Finally
B5(XY) = (ac — bd) + i(ad + be) = (a + ib)(c + id)

so B3 is a homomorphism. Its kernel is 1 and image is the whole of the set of
non-zero complex numbers. [6 marks|

5. The sign of the identity permutation is even. The sign of an [-cycle is odd
if the length of [ is an even integer and its sign is even if the length of [ is an
odd integer. The sign of a composite of two permutations is the product of
the signs. [2 marks]
In disjoint cycle notation, the given permutations are (1 8)(2 7)(3 6)(4 5)
and (124875)(36). The first of these is a product of four odd cycles, so will
be even. The second is a product of a cycle of length 6 (odd permutation)
with a cycle of length 2 (odd permutation) so is also an even permutation.
[2 marks]
Since the product of two even permutations is even, the identity is even
and the inverse of a permutation 7 has the same sign as 7, A(n) is a subgroup.
It is normal since if 7 is even and « is any permutation then the sign of o~ '7a
is 1, so A(n) is normal. [4 marks]
If 7 is any permutation, then

sign(n?) = sign(rm) = (sign(w))* = 1.

[2 marks]

An example of an even permutation of order 2 is (1 2)(3 4).  [2 marks]

Now let m be a permutation of odd order. If 7 were odd and 7 had odd
order k, then

1 = sign(1) = sign(g*) = sign(g)* = (-1)* = —1.

This contradiction shows that = must be an even permutation.  [5 marks]
If we could write any cycle as a product of 3-cycles, the cycle would be
even (since a 3-cycle is even). Since there are odd cycles, this is impossible.
[3 marks]

6. The conjugacy class of g is the set of distinct elements of G of the form
2 lgx as x varies over GG. The centralizer of g is the set of elements of G
which commute with g so

Colg)={ze€eG:2g=gr}={z € G:g=12""gz}.
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[2 marks]
To show that Cg(g) is a subgroup, it is clear that the identity element
commutes with g, if z,y € Cg(g) then zg = gz and yg = gy, so

(zy)g = z(yg) = z(gy) = (zg)y = (92)y = g(zy)

so xy € Cg(g). Also if z € Cg(g) then g = gz so g = x7'gr and gz~ =

r7'gs0 7' € Cg(g). Thus Cg(g) is a subgroup of G. [3 marks|

Now supose that x7 gz = y~lgy. After rearranging this expression, we
see that (zy~')"tg(zy~') = g so that zy~! € Cg(g) and so the right cosets
Cg(g)x and Cg(g)y are equal. Now let Cg(g)z1, - - -, Cg(g)x, be the complete
list of distinct right cosets of Cg(g) in G. This means that each element of
G is in one of this list of cosets, and there are no repetitions in this list. This
has the consequence that x;x;~" is not an element of C(g) unless i = j and
so the conjugates z; ‘g1, ...,z gz, are all distinct. If z is any element of
G, then z is in Cg(g)z; for some i, so x = cx; with ¢ € Cg(g). Then

r lgx = (cxi)’lgca:i = x;l(cflgc)xi = a:;lgacz-

so each conjugate of ¢ is equal to one of the r conjugates x; ' gx;. This shows
that g has precisely r conjugates where r = |G : Cg(g)|- [4 marks]

For the group D(4) = {(a,b : a* = 1 = b%, b~ tab = a™!), the identity
element commutes with every element of G, so Cg(1) = G, and the only
conjugate of 1 is 1 itself. Since b='ab = a~!, it follows that

b ta’b=btaab =0b ‘abb ‘ab=a 2.

Since a* = 1, a®> = a2, so a? is centralized by a and by b. It follows that

G = Cg(a?) and the only conjugate of a? is itself. Clearly a is conjugate
to a !, and since Cg(a) includes the four powers of a, there are no more
conjugates of a. We have determined all the conjugacy classes inside (a)
Next note that 1,b,a* and therefore ba? all lie in Cg(b) so b has at most 2
conjugates. However a 'ba = a la'b = a?b = ba?, so b has precisely two
conjugates. Finally since the conjugate of ba by a is ba®, and 1, ba, a2, ba® all
commute with ba, this element also has two conjugates The complete list of
conjugates in D(4) is therefore

{1}, {a®}, {a,a®}, {b,ba®}, {ba,ba’}.
[5 marks]



For the group D(5) = (a,b: a®1 = b* b 'ab = a™ '), the identity element
is again in a conjugacy class on its own. Clearly a is conjugate to a ! and
a has the powers of a in its centralizer, so a has precisely two conjugates.
Similarly, a? is conjugate to a 2 = a?®, and commutes with all powers of a, so
a? has precisely two conjugates. We turn to the five elements containing b.
Since no power of a commutes with b, it is clear that C(b) consists of {1, b},
so b has five conjugates. The complete list of conjugates in D(5) is therefore

{1}, {a,a"}, {a®a’}, {b,ba,ba® ba’ ba'}.

[6 marks]

7. Let p be a prime and G be a finite group of order p*n where p does not
divide n. Then:

(1) G has Sylow p-subgroups (subgroups of order p¥);

(2) the number of these is congruent to 1 mod p;

(3) if P is a Sylow p-subgroup and @ is any p-subgroup, there is an
element ¢ of G such that ¢gQg~! C P;

(4) any two Sylow p-subgroups are conjugate, the number of these divides
|G [4 marks]

Suppose that G is a group of order 35 = 5 x 7 the number of Sylow 5-
subgroups is 1,6,11,16,, ... and divides 35, so is 1. The number of Sylow 7
subgroups is 1,8, 15,22, ... and divides 35 so is also 1. Thus G has a unique
Sylow 5-subgroup, P, say, and a unique Sylow 7-subgroup @), say. These are
each normal with P containing all 4 non-identity elements of G of order 5
and () containing all 6 non-identity elements of G of order 7. It follows by
Lagrange that there must be elements of G of order 35 (the only other divisor
of 35), so G is cyclic. [5 marks]

This argument does not show that a group with 14 elements is cyclic,
because a group with 14 elements is allowed to have 7 Sylow 2-subgoups.

[2 marks]

Now suppose that G is a group with 12 = 4 x 3 elements. The number
of Sylow 2-subgroups is either 1 or 3. The number of Sylow 3-subgroups
is either 1 or 4. If the Sylow 3-subgroup is not normal, there are 4 Sylow
3-subgroups. These distinct subgroups would all intersect in the identity
element, giving in total 8 elements of order 3, and only leaving 3 elements
of G to be distributed in the Sylow 2-subgroups. Since a Sylow 2-subgroup
has 3 non-identity elements, it follows that there could only be one Sylow
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2-subgroup. We deduce that G either has a normal Sylow 3-subgroup or has
a normal Sylow 2-subgroup. [4 marks|

To show that b 'ab = o~ by induction, first note that the case i = 1 is
given for all dihedral groups. Then

bl = b afab = b a'bb " ab = a'a = o~ OtV

as required. [1 mark]

When G = D(p) with 2p elements, the primes dividing |G| are 2 and p.
By standard Sylow theory G' has one Sylow p-subgroup and the number of
Sylow 2-subgroups (each with 2 elements ) is 1 or p. However, each element
of the form ba’ has order 2 since

(ba')? = ba'ba’ = b~ ta'ba' = a""a’ =1

This means that there are exactly p subgroups with 2 elements, so G’ has p
Sylow 2-subgroups. [4 marks]

8. The Jordan-Holder Theorem says that any two composition series of a
group are isomorphic. [1 mark|

A composition series is a finite series of subgroups, each normal in the
next

G=Gy>G > -G, ={1}

which can not be refined without repeating terms. [1 mark]
Two composition series are isomorphic if there is a bijection between the
quotient groups in the respective series so that corresponding quotient groups
are isomorphic. [1 mark]
(a) Let G be a cyclic group of order 6 generated by = (so z® = 1). Then
(x?) is a subgroup of G which is normal since G is abelian. It follows (since
2 and 3 are primes) that a composition series for G is

G > (z%) > {1}.

[2 marks]

(b) Now let G be a non-cyclic of order 4 and let y be a non-identity

element of G (so that y2 = 1). Apply the same argument as in (1) with (y)
replacing (z2), to obtain the composition series

G > (y) = {1}.
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({y) is normal since it has index 2). [2 marks]

(c) Next, let G be a group with 21 elements. By Sylow theory, the number
of Sylow 7-subgroups is 1 mod 7 and divides 21, so is 1 and G so has a unique
Sylow 7-subgroup P which is therefore normal. Then the series G > P > {1}
is a series of normal subgroups of G which cannot be refined because 3 and
7 are primes, so is a composition series. [5 marks|

(d) Now let G be the symmetric group S(4). The four elements
1 (12)(3 4 (13)(2 4 (1 9)(2 3

form a subgroup V which is normal since the three non-identity elements
form a conjugacy class. Also the alternating group A(4) has index 2 so is
normal. So we have a series for G

G>A4) >V >{1}

since S(4)/A(4) has order 2 and A(4)/V has order 3 these bits cannot be
refined, so we are left with the problem of whether V' has a better composition
series. This is solved in (b), so a composition series is

G>2AM4) 2V ={1,(12)B4}={1}

[6 marks]

An example of a group with two composition series is provided by almost

all of the above examples. For the group in (1), 1 < (2?) < G and also

1 < (2*) < G are normal series (G is abelian) with prime indices, so they
form two different composition series. (Any other example will suffice.)

[2 marks]



