Math 343 2001 Solutions.

1. (a) A group is a set G with a law of composition satisfying the following
axioms:

(G1) for any z,y € G, xy is in G,

(G2) for any z,y, 2z in G, z(yz) = (zy)z,

(G3) there is an element 1 in G such that for all g € G, g1 = g = 1g,

(G4)

G4) given an element g € G, there is an element ¢~ of G with g¢g ' =1 =
99
[4 marks]
Before computing the inverse of A, we note that

100 1 00 1 0 O
a 1 0 d 10 |= d+a 1 0
b ¢ 1 e f 1 dc+b+e c+f 1

If the product of these two matrices is to be I, it follows that: a +d = 0 so
d=—a,c+ f=0,s0 f=—cand dc+ b+ e =0 so that e = —b+ ac.
[3 marks]
To show that G is a group, closure follows by the above multiplication
rule. We are given associativity. The identity is /, and we have just found
the inverse to be of the required form.
[3 marks]
If A were an element of order 2 then, since A% = 1,

2

1 00 1 00 1 0 0
01 0 |=a 100 = 2a 1 0
0 0 1 b ¢ 1 2+a? 2¢ 1

It would follow that @ = ¢ = 0 and so b would also be zero, so G has no

elements of order 2.
[3 marks]
To find the order of Z, first note that
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100 1 00
Z2=1010| =010
2 0 1 4 0 1



and so (by induction)

100
A 010
2n 0 1
It follows that Z has infinite order.
[3 marks]
For a general element A in G, we see that
1 00
AZ = a 1 0],
b+2 ¢ 1
whereas
1 00
ZA= a 10
b+2 ¢ 1
so AZ = ZA.
[2 marks]

Finally, to find two elements of G which do not commute, we take our
basic multiplication formula, and note that the entry in the third row of
column 1 for AB would be dc+ b+ e, and the the corresponding entry in BA
would be af + e 4+ b. Clearly these are not equal in general, and a specific
example of non-commuting elements may be found when ¢ = f =d =1 and
c=0.

[2 marks]

2. First, we show that the equation does have a solution by setting z = u~!v
so that

ur = u(u ') = (uu v =1v =v

using (G2), (G4) and (G3) respectively. Now the solution is unique because
if uz, = v and uxy = v then uz; = uxr, so multiplying on the left by v~}
gives v '(ux;) = u '(uzs). now using associativity, (v 'u)zr; = (v tu)zs.
Then the inverse axiom implies that 12, = 1z, so finally the identity axiom
shows that x; = z+.
[6 marks]
If G = D(4), the solution to bar = a? is



r = (ba)'a’ =a"'b"'a® = a’aba’®
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= a’ba 'a? = aaba = aba ta = ab = ba ! = ba®.

[3 marks]
To calculate the square of elements in D(4)

using the basic relations the other four elements all gave order 2. (A sample
justification is
(ba)? = baba = bba 'a = b*.1 = 1).

[4 marks]

If bax? = a had a solution, we could find an z such that 22 = ba® (using
the above), but we have just seen that no element of G squares to give ba®.
[2 marks]

Finally to solve uz® = v, work out the cubes of elements of G' to get
1,a3, a2, a and b, ba, ba?, ba® (elements in“standard order”) We see that every
element has a unique cube root, so the given equation has a unique solution.
[5 marks]
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3. Suppose first that tH = yH. Then, since 1 € H, z.1 =z € yH. Thus
x = yh for some h € H. Then y~'z = h € H. Conversely, if y"'x =h € H
and zhy € xH then, since x = yh, xhy = yhh, = yhy with hy € H so
xH C yH. On the other hand, if yh; € yH, then since y = zh ' we see
that yhi = xh 'h; = zhs for some h3 in H. We deduce that yH C zH and
conclude that xH = yH.
[5 marks]
Now let G be the dihedral group D(6), and H be the subgroup with two
elements 1 and 2. Since |H| = 2, there are six distinct left cosets and since

H, zH = {x,2°}, 2°H = {2* 2°},
yH ={y,yz’}, yzH = {yz,yz'}, yz* = {ys* yz°}

this is the complete list of (left) cosets. The first three are clearly right
cosets, and since z* commutes with y, yH = Hy, Hyr = {yx,yz*} = yzH



and Hyz? = yz?H. Since every left coset is a right coset, H is a normal
subgroup of G.
[5 marks]
The quotient group G/H has order 6 and yHxH = yzH = {yz,yz*},
whereas tHyH = xyH = yz 'H = {y2° y2?} so G/H is non-abelian and
so non-cyclic.
[4 marks]
For the final part, take (for example) K = {1,y}, so that zK = {z,zy} =
{z,yz?}, but Kz = {x,yx}, so left and right cosets are different, and K is
not normal.
[6 marks]

4. Let 0 : (G,0) — (H, *) be a group homomorphism. Then for all z,y in G,
O(zoy) =0(zx)*0(y). [1 mark]
It follows that 8(1g) * 8(g) = 6(g) for all g € G, so 0(1¢) is the identity
element of H (by uniqueness) as required.
Also 6(g) * 6(h) = 6(1g) = 1y, so B(h) is the inverse of #(g). [2 marks]
We have
ker 0 ={g€ G:0(9) =1u}

[1 mark]
and
im # ={h € H: h=0(z) for some z € G}.

[1 mark]
The homomorphism theorem states that if € is a homomorphism from G
to H then

e im # is a subgroup of H;
e ker # is a normal subgroup of GG; and
e G/ ker § = im 0.

[3 marks]
To check if # is a homomorphism, note that G is a group under matrix
multiplication, and consider

alblze(( o Zi)) 0((%1 Zi)
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whereas

_ a1b1 a11)2+a2b3
)

Thus #(AB) = a1b; so 6 is a homomorphism from G to the (multiplicative)
group of non-zero real numbers. The image of 6 is clearly the whole set (6 is
surjective) and the kernel, N, of 6 are those matrices in G with a; = 1.

[4 marks]
azby = ¢(< 0 o >) ¢(< o Zi )

and ¢(AB) = a1by + agbs, so ¢ is not a homomorphism.

As for ¢

[2 marks]
It follows by the homomorphism theorem that G/N is isomorphic to im
¥ and so is abelian.
[2 marks]
To find the subgroup K of N, we define a map A on N by:

1 [45)) _
)\(( 0 as )) = Qas.
This is easily checked to be a homomorpism with kernel K consisting of those
elements of N with a3 = 1, and image the non-zero real numbers. It then
follows that K is abelian, as is K/N.
[4 marks]

5. Lagrange’s Theorem states that if |H| is a subgroup of a finite group G
then |H| divides |G| and |G|/|H]| is equal to the number of distinct cosets of
H in G.
[2 marks]
If G has an element z of order d, consider the powers

H={1,z,2% ... 2%

This is a subgroup of G: it contains 1g (which is its own inverse). The
inverse of z* (for 1 < 4 < d— 1) is 2777, an element of H. For products
2'zd = 27 an element of H unless i+ j > d — 1 in which case i +j = d + k
with 0 < k < d — 1 when z%tF = gk = 1.2% € H.

[3 marks]



The elements in A(4) are 1 (of order 1) (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)
(all of order 2) and eight elements of order 3 :

(123),(132),(124),(142),(134),(143),(234),(243)

so that |A(4)| = 12.
[3 marks]
We see that A(4) has no element of order 6 even though 6 divides 12.
[3 marks]
Next we note that A(4) has a subgroup with 4 elements consisting of
{1,(1 2)(34),(1 3)(24),(14)(2 3)} (justify this in some way e.g. produce
the table) . This subgroup is not cyclic because every non-trivial element
has order 2.
[5 marks]
Finally an example of a non-cyclic group with each subgroup cyclic is
S(3). This group is non-abelian since (1 2)(2 3) # (2 3)(1 2), and so non-
cyclic. Any proper subgroup of S(3) has prime order so is cyclic by Lagrange.
[4 marks]

6. A set X is a G-set if there is an action o : G x X — X such that:
lgox =z for all z € X, and

ghox=go(hox)forall ggh € G and all z € X.

[2 marks]
The stabilizer G, of x € X is
G,={9€G:gox=ux}.
[1 mark]
The orbit O, is
O, ={y:y=gox for some g € G}.
[1 mark]

The orbit-stabilizer theorem says

G is a subgroup of G.



If G is finite, then |O,] = |G : G,|.

[2 marks]
Now consider the set of subgroups of G. If H is in this set, 1,0 H =
1,H1g™! = H and if z,y are in G, then zyH (zy)~' = zyHy'z7' = z(y o
H)z™' =z 0 (yo H) as required.
[2 marks]
The orbit of H is the set of subgroups of the form zHz~! as x varies over
G and the stabilizer of H is the set of those ¢ for which gHg™! = H.
[2 marks]
(a) H is a subgroup of index 2 in G so is normal and G = Ng(H).
[2 marks]
(b) When H = (y), we see that H is contained in the abelian subgroup
K = (y,x?) of order 4, so Ng(H) C K. However, H is not normal in G since
cHz ' = {1,yz}, so K is the required normalizer [5 marks]|
(c) For G = S(3), G has six elements so |Ng(H)| divides 6 (by Lagange)
and is divisible by 2 so is 2 or 6. But H is not normal, so we conclude that
H = Ng(H).
[3 marks]

7. Let p be a prime and G be a finite group of order p*n where p does not
divide n. Then:

(1) G has Sylow p-subgroups (subgroups of order p¥),

(2) the number of these is congruent to 1 mod p,

(3) if P is a Sylow p-subgroup and @ is any p-subgroup, there is an
element g of G such that gQg ! C P,

(4) any two Sylow p-subgroups are conjugate, the number of these divides
|G- [4 marks]

If there is precisely one Sylow p-subgroup P, then every conjugate of P
must be equal to P, so P is a normal subgroup. If P is normal, then every
conjugate of P is equal to P, so each Sylow p-subgroup must equal P.

[2 marks]

Suppose that G is a group of order 15=3 x 5 the number of Sylow 3-
subgroups is 1,4,7,10,,... and divides 15, so is 1. The number of Sylow 5
subgroups is 1,6, 11,16, ... and divides 15 so is also 1. Thus G has a unique
Sylow 3-subgroup, P, say, and a unique Sylow 5-subgroup @, say. These are
each normal with P containing all 2 non-identity elements of G of order 3



and () containing all 4 non-identity elements of G of order 5. It follows by
Lagrange that there must be elements of G of order 15 (the only other divisor
of 15), so G is cyclic. [4 marks]
Now suppose that G is a group with 56=8 x 7 elements. The number of
Sylow 2-subgroups is either 1 or 7. The number of Sylow 7-subgroups is either
1 or 8. If the Sylow 7-subgroup is not normal, there are 8 Sylow 7-subgroups.
These distinct subgroups would all intersect in the identity element, giving
in total 48 elements of order 7, and only leaving 7 non-identity elements of
G to be distributed in the Sylow 2-subgroups. Since a Sylow 2-subgroup
has 7 non-identity elements, it follows that there could only be one Sylow
2-subgroup. We deduce that G either has a normal Sylow 7-subgroup or has
a normal Sylow 2-subgroup. [5 marks]
Finally, if G = 30 the number of Sylow 5-subgroups is 1 or 6. If this
number is 1, there is an element of order 5 which generates a normal subgroup
N and G/N has order 6. Then G/N would have a Sylow 3-subgroup H/N
and H would be a subgroup of G with 15 elements. If the number of Sylow
5-subgroups is 6, there are 25 elements of order 5, so there is only room for
one Sylow 3-subgroup K, say. Since Kis unique it is normal and G/K has
order 10. Thus G/K would have a Sylow 5-subgroup L/K giving a subgroup
L of order 15. In either case, G has a subgroup of order 15, which is cyclic

by part (a). Thus G has an element of order 15.
[5 marks]|

8. The Jordan-Holder Theorem says that any two composition series of a
group are isomorphic. [1 mark]

A composition series is a finite series of subgroups, each normal in the
next

G=Go>G >---G={1}

which can not be refined without repeating terms. [1 mark]
Two composition series are isomorphic if there is a bijection between the
quotient groups in the respective series so that corresponding quotient groups
are isomorphic. [1 mark]
If H/K has prime order p, a normal subgroup L of H with K < L < H
would give rise to a normal subgroup of H/K. Since H/K has prime order,

so L is either H or K.
[3 marks]



(a) Let G be a cyclic group of order 4 generated by z (so z* = 1). Then
(x?) is a subgroup of G which is normal since G is abelian. It follows (since
2 is prime) that a composition series for G is

G > (z*) > {1}

[2 marks]

(b) Now let G be a non-cyclic of order 4 and let y be a non-identity
element of G (so that y?> = 1). Apply the same argument as in (1) with (y)
replacing (z?), to obtain the composition series

G = (y) = {1}.

({y) is normal since it has index 2).
[2 marks]

(¢) Next, let G be cyclic of order 15 (so it is generated by x with z'° = 1).
Consider the subgroup (z*) of order 5. It is normal because G is abelian.

The series
G > (z*) > {1}

cannot be refined because 3 and 5 are primes, so it is a composition series.
[3 marks]

(d) Now let G be the alternating group A(4). The four elements
1 (12)(34), (13)(24), (14)(23)

form a subgroup V which is normal since the three non-idenitity elements
form a conjugacy class. So we have a series for G

A(4) >V > {1}

since A(4)/V has order 3 this bit cannot be refined, so we are left with the
problem of whether V' has a better composition series. This is solved in (b),
so a composition series for G is (all indices prime)

G>AM) =V > {1,(12)(34)} = {1}.

[4 marks])

(e) We finally turn to the dihedral group D(10). The subgroup (z) is
cyclic of order 10 and is normal because it is of index 2. Also (z?) is a
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subgroup of this and is normal because (z) is abelian, so a composition
series is

G > (z) > (2%) > {1}.

This cannot be refined because the factors are of prime order.
[3 marks]
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