Math 343 Solutions.

1. (a) A group is a set G with a law of composition satisfying the following
axioms:

G1) for any z,y € G, zy is in G}
G2) for any z,y,z in G, z(yz) = (zy)z;

(

(G2)

(G3) there is an element 1 in G such that for all g € G, g1 = g = 1g.
(G4)

G4) given an element g € G, there is an element g ! of G with gg~ ! =1 =g !g.
[4 marks]
The inverse of X is X itself and the inverse of Y is the matrix
— 0
0 2 /)°
[2 marks]

Since X = X!, X2 = I. Also, we note that Y? = —I,Y3 =Y ! so Y has order
4.
[2 marks]
Thus it is clear that (X) contains I,Y,Y? Y3 X, XY, XY? XY3. To show
that these eight matrices form a group, we compute their multiplication table:

1 Y Y2 v3 X XY Xy? Xy3
1 1 Y Y2 Y3 X XY XYy? Xy3
Y Y Y2 v?3 I Xy X XY XVY?

Y2 | vy v3 1 Y XY? XY® X XY

Yy | V3 1 Y Y2 XY XY? XY? X

X X XY Xy? Xy? I Y Y2 v?
XY | XYy Xvy? Xy3 X Y3 1 Y Y?
XY? | Xy? Xy* X Xy Yy? Y3 1 Y
XY? | Xy? X XY XY? Y Y2 v? 1

[6 marks]

This group is non-abelian since XY and Y X are unequal. [1 mark]

Let
a b
7=(% 1)

be the required matrix. Then the condition that XZ = ZX yields the matrix

equation
cd\ _ (boa
a b)) \d c



so that @ = d and b = ¢. Then the condition that YZ = ZY gives that

ai —bi \ _ ai bi
bi —ai )] \ —bi —ai |

Thus b = 0, so Z has the form
a 0
0 a /"

If Z%2 = I, then a = £1, so the only non-identity matrix of this from is —I which

is equal to Y2 [3 marks]
It then follows from our table that Z commutes with every element of G.
[2 marks]

2. Lagrange’s Theorem states that if |H| is a subgroup of a finite group G then
|H| divides |G| and |G|/|H]| is equal to the number of distinct cosets of H in G.
[2 marks]
If G has order p, let z be any non-trivial element of G, then |(x)| has order
dividing p. Since this order is not 1 by choice, it must be p, so G = (z) and so G
is cyclic. [3 marks|
If H has p elements and K has ¢ elements, then since H N K is a subgroup of
H, the number of elements in H N K divides p and since H N K is a subgroup of
K this number of elements divides ¢. Since p and ¢ are distinct prime numbers,
the only possibility is for H N K to contain just one element, so H N K = {1}.
[2 marks]
Now, we are given that yz = 271y (the anchor step), so suppose that yz* =
7%y then

yrftl = yaky = o kyy = o~ (F+Dy,

as required [2 marks]

To find the order of each of the 12 elements of G we note that z has order
6, so 22 has order 3, ® has order 2, z* has order 3 and z® has order 6. Also
yriyz' = y(yz~*)z* = y? = 1, so each other element of G has order 2. [4 marks]

Since G has 12 elements, the possible orders of subgroups of G are 1,2, 3,4,6
or 12. Thus G has no element of order 4 but could possibly have a subgroup of
order 4 since 4 divides 12. If G has a non-cyclic subgroup with 4 elements, each
non-identity element has order 2, and this group is abelian. The element 2* has
order 2 and commutes with y (since yz® = 73y = 23y), so the required subgroup
is {1, 2%y, yz3}. [6 marks]

Finally, we see that the only number in the list of divisors of 12 which could
correspond to a non-abelian subgroup of G is 6, so the only possible proper non-
abelian subgroup of G' could have order 6, since the other divisors are prime or 4
and groups of order 4 are abelian. [2 marks]



3. Suppose that zH, yH are two left cosets of H in G and suppose that these
cosets are unequal. If z is an element in both zH and yH, then z = zh and
2z = yh, for some h,hy € H. Thus zh = yhy, so y~'z = hyh~!. Then y 'z is an
element hy, say of H since H is a subgroup. It then follows that x = yhs, so that
xH = yhoH. Since hy is an element of H, and H is a subgroup, hoH = H, so
xH = yH contrary to assumption. We deduce that if tH,yH are unequal they
can have no elements in common. [4 marks].

To show that the given set H is a subgroup, name its elements as I, A, B (in
the given order) and compute the table

|1 A B
I[T A B
AlA B I
B|B I A

It is clear from this that H is closed, has an identity (/) and the inverse of A is
B. Since matrix multiplication is associative, H is a subgroup. [3 marks]

Now to compute the left cosets of H in G, IH = H = {1, A, B}, and —[H =
{-I,—A,—B}. Then

(Fo)r=i(v o) (5 5 ) (0

Finally, we note that

(5 ) =S ) ()6 A

These 12 elements exhaust the complete list of elements of the group, so we have
found 4 distinct cosets [4 marks].

To find the right cosets, use the same coset representatives. It is clear that
IH = HI and that (—I)H = H(—1I), so we only need to compute

(3 o)=tr o) (538 S
()= )R )G A

Thus, we see that left cosets are right cosets so H is a normal subgroup [2 marks]
The square of every element of GG is in the subgroup H, so the square of every

and

coset is the identity coset, so G/H is not cyclic. [4 marks]
The given set is not closed under multiplication, (the square of neither non-
identity element is in the set) so K cannot be a normal subgroup. [3 marks]



4. Let 9 : (G,0) — (H,x*) be a group homomorphism. Then for all z,y in G,
Wz oy) =9(z) xI(y). [1 mark]

It follows that J(1g) * 9(g) = J(g) for all g € G, so ¥(1¢) is the identity
element of H (by uniqueness) as required.

Also ¥(g) * 9(h) = ¥(1g) = 1y, so ¥(h) is the inverse of J(g). [2 marks]
We have
ker 9 ={g€ G:9(9) =1n}
[1 mark]
and
im 9 ={h € H: h=19(z) for some z € G}.
[1 mark]

Then K=ker ¥ is a subgroup, because 15 € K. If x, y are elements of K, then
Iz) =9(y) = 1g,s0 I(zoy) = I(x)*xI(y) = 1lg*x1yg = 1y, so zoy € K. Finally
since 9(¢7 ") = 9(g) ", 9(g ') =1~ ' = 1y and g~ ' € K. It only remains to
show that K is a normal subgroup. If g € G and k € K then

Hgokog ) =9(g) x 1y *V(g)"" =1g

sogokogleK. [4 marks]
The homomorphism theorem says

(a) im ¥ is a subgroup of H;

(b) ker ¥ is a normal subgroup of G;

(c) the quotient group G/ker? is isomorphic to im 9. [3 marks|
1 a b c 1 d e f
01 a b 0 1 d e
Wo o1 o "% 001 q))=te
0 0 0 1 0 0 0 1
since a + d is the (1,2) entry of the product matrix, 9 is a homomorphism.
[2 marks]
However
1 a b c 1 d e f
0 1 a b 0 1 d e
Uo o1 o) T%0 01 a|)=0Fe
0 0 0 1 0 0 0 1

whereas the (1,3) entry of the product matrix is b 4+ e + ad. Since these are
unequal in general, ¢ is not a homomorphism. [2 marks]
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Now ker ¥ consists of those matrices with ¢ = 0, and

1 0 b ¢ 1 0 e f 1 0 e+b f+c
01 0 b 01 0 e[ 101 0 b+e
0 01 0 001 0| 00O 1 0
0 0 0 1 0 0 0 1 0 0 0 1

so ker 9 is clearly abelian. Thus G/ ker ¥ is isomorphic to a subgroup of the
integers so is cyclic and so G has an abelian normal subgroup with quotient
group infinite cyclic, using the homomorphism theorem. [4 marks]

5. The sign of the identity permutation is even. The sign of an I-cycle is odd if [ is
even and the sign is even if [ is odd. The sign of a composite of two permutations
is the product of the signs. [2 marks]

It follows that the product of two even permutations is even, that the identity
is in A(n) and that the inverse of a permutation 7 has the same sign as 7, so
A(n) is a subgroup. It is normal since if 7 is even and « is any permutation then

the sign of o 'ra is 1, so A(n) is normal. [3 marks]
The set of odd permutations is not a subgroup because it isn’t closed (the
product of two odds is even). [1 mark].
If 7 is a product of r distinct cycles of lengths [, ...[. then 7 has order the
Lem. of Iy,...1,. [1 mark|
Now suppose that 7 has odd order k. Then if 7 were odd, 7* would have sign
(—=1)* = —1, so would also be odd. But 7% = 1 is even, so this contradiction
shows that 7 is even. [3 marks]

To determine orders of elements, we only need consider possible cycle types:

n=4 n=>5 n==~06
cycle type order | cycle type order | cycle type order

(2) 2 (2) 2 (2) 2

(3) 3 (3) 3 (3) 4

(4) 4 (4) 4 (4) 4

(2)(2) 2 (2)(2) 2 (2)(2) 2

(5) 5 (5) 5

(2)(3) 6 (2)(3) 6

(6) 6

(2)(2)(2) 2

(2)(4) 4

(3)(3) 3
[4 marks]
We now see that 5 is the smallest integer such that S(n) has an element of
order 6, since S(2) and S(3) do not have elements of order 6. [2 marks]



Finally, the smallest n with S(n) having an element of order 10 is 7 (an
example being (1 23 4 5)(6 7)), but this element is odd so we need the mimimum
of an extra transposition to have an even element of order 10 ((12345)(6 7)(89)),

so the required number is 9.

6. A set X is a G-set if there is an action o : G X X — X such that:

lgox =z forallz € X

ghox=go(hox)forall ggh € G and all z € X.

The stabilizer G, of x € X is

G,={9€G:gox=uzx}.

The orbit O, is

O, ={y:y=gox for some g € G}.

The orbit-stabilizer theorem says
G is a subgroup of G.
If G is finite, then |0, = |G : G|

To show conjugacy satisfies the two G-set axioms:

lox =1z17, and

(gh) oz = ghx(gh) ' = ghzh™'g7' = go (hah™') = go (hox).

[4 marks]

[2 marks]

[1 mark]

[1 mark]

[2 marks]

The orbit of x is the conjugacy class of x and the stabilizer of z is its centralizer

Ce(z) ={h € G: hg =gh}.

[4 marks]

The elements of A(4) are the identity element together with the 8 3-cycles

(123), (132), (124), (142), (134), (143), (234), (243)

and the 3 products of disjoint 2-cycles

(12)(34),(13)(24),(14)(23).
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[1 mark]

The identity element is always a conjugacy class on its own. [1 mark]

The elements {1, (1 2 3), (1 3 2)} are in the centralizer of (1 2 3), so it has at
most 4 conjugates. However

(12)(34)(123)(12)(34) = (214)=(142),
(13)((24)(123)(13)(24) = (341)=(134), and
(14)((23)(123)(14)(23) = (432)=(243)

so (1 2 3) has precisely 4 conjugates [3 marks]
In a similar way, we see that (1 3 2) has as its 4 conjugates (1 3 2), (1 2 4),
(143)and (234). [2 marks]

We now have counted 9 elements of GG, so only 3 remain. These form a single
conjugacy class since

(123)(12)(34)(132) = (23)(14);
124)(12)(34)(142) = (24)(31); and
134)(12)(34)143) = (13)(24

Thus G has 4 conjugacy classes. [3 marks]

7. Let p be a prime and G be a finite group of order p*n where p does not divide
n. Then:

(1) G has Sylow p-subgroups (subgroups of order p*);

(2) the number of these is congruent to 1 mod p;

(3) if P is a Sylow p-subgroup and @ is any p-subgroup, there is an element
g of G such that gQg¢~! C P;

(4) any two Sylow p-subgroups are conjugate, the number of these divides
|G]|. [4 marks]

If there is precisely one Sylow p-subgroup P, then every conjugate of P must
be equal to P, so P is a normal subgroup. If P is normal, then every conjugate
of P is equal to P, so each Sylow p-subgroup must equal P. [2 marks|

Suppose that G is a group of order 15=3 x 5 the number of Sylow 3-subgroups
is 1,4,7,10,,... and divides 15, so is 1. The number of Sylow 5 subgroups is
1,6,11,16,... and divides 15 so is also 1. Thus G has a unique Sylow 3-subgroup,
P, say, and a unique Sylow 5-subgroup (), say. These are each normal with P
containing all 2 non-identity elements of G of order 3 and () containing all 4
non-identity elements of G' of order 5. It follows by Lagrange that there must be
elements of G of order 15 (the only other divisor of 15), so G is cyclic. [5 marks]

Now suppose that G is a group with 12=4 x 3 elements. The number of Sylow
2-subgroups is either 1 or 3. The number of Sylow 3-subgroups is either 1 or 4.
If the Sylow 3-subgroup is not normal, there are 4 Sylow 3-subgroups. These



distinct subgroups would all intersect in the identity element, giving in total 8
elements of order 3, and only leaving 3 elements of G to be distributed in the
Sylow 2-subgroups. Since a Sylow 2-subgroup has 3 non-identity elements, it
follows that there could only be one Sylow 2-subgroup. We deduce that G either
has a normal Sylow 3-subgroup or has a normal Sylow 2-subgroup. [4 marks]

Finally, there are 5 possible groups to choose from, but an obvious choice is
an abelian group (such as Cg) together with D(4) and @, the quaternion group
of order 8. Since the latter 2 are non-abelian, neither can be isomorphic to the
abelian one. Also () only has one element of order 2 whereas D(4) has 5 elements
of order 2, so these are not isomorphic. [6 marks]|

8. The Jordan-Holder Theorem says that any two composition series of a group
are isomorphic. [1 mark]
A composition series is a finite series of subgroups, each normal in the next

G=Gy>G >--Gy={1}

which can not be refined without repeating terms. [1 mark]
Two composition series are isomorphic if there is a bijection between the
quotient groups in the respective series so that corresponding quotient groups
are isomorphic. [1 mark]
(a) Let G be a cyclic group of order 4 generated by = (so z* = 1). Then (z?)
is a subgroup of G which is normal since G is abelian. It follows (since 2 is prime)
that a composition series for G is

G > (z%) > {1}

[3 marks]|

(b) Now let G be a non-cyclic of order 4 and let y be a non-identity element

of G (so that y* = 1). Apply the same argument as in (1) with (y) replacing
(x?), to obtain the composition series

G =y = {1}

({y) is normal since it has index 2).
[3 marks]
(c) Next, let G be cyclic of order 10 (so it is generated by z with z!* = 1).
Consider the subgroup (z?) of order 5. It is normal because G is abelian. The

series
G > (z%) > {1}

cannot be refined because 2 and 5 are primes, so is a composition series.
[3 marks]



(d) Now let G be the symmetric group S(4). The four elements
1 (12)(3 4 (13)(2 4 (1 92 3)

form a subgroup V' which is normal since the three non-idenitity elements form
a conjugacy class. Also the alternating group A(4) has index 2 so is normal. So

we have a series for GG
G>AM4) >V >{1}

since S(4)/A(4) has order 2 and A(4)/V has order 3 these bits cannot be refined,
so we are left with the problem of whether V' has a better composition series.
This is solved in (b), so a composition series is

G>AM)>V>{1,1203 4} > {1}

[56 marks])

(e) We finally turn to the dihedral group D(6). The subgroup (z) is cyclic of

order 6 and is normal because it is of index 2. Also (x?) is a subgroup of this and
is normal because (z) is abelian, so a composition series is

G > (z) > (z%) > {1}.

This cannot be refined beacuse the factors are of prime order.
[3 marks]



