Solutions to 2MP62 May 1999 examination

1.
(i) From z — 1 < [z] < z, we deduce that, if [z] > n then z > [z] > n. Conversely, if z > n, then
[x] > x — 1 gives [z] > n — 1. But [z] is an integer, so z > n.

Replace z by ay and n by a[y]: we have

[ay] > aly] <= ay > aly].

But the second inequality follows immediately from y > [y] and a > 0.
4 marks. First part from exercise sheet, second part unseen.

(ii) The number of positive multiples of an integer k& > 0 which are < n is clearly [Z]. To

count the power of p dividing n!, since p is prime, it is enough to count the powers of p dividing
1,2,3,...,n and add these powers up. Now, the number of multiples of p among 1,2,3,....,n
is [%] Each multiple of p? among 1,2, 3,...,n gives an additional power of p dividing into n!,

giving [%] + [fg] so far. Continuing in this way we get that the total power of p is as in the
given formula.
Let 50! = 29151 ¢; where ¢; is not a multiple of 2 or 5. Then the power of 10 dividing 50! is
clearly the smaller of a; and b;. Working out a; we get
50 507 507 [50 50
=)+ 7 [F] el =)
since all subsequent terms are zero. This gives a; = 25+ 12+ 6 + 3 4+ 1 = 47. Working out b
we get
(507  [50]
5] )
since all subsequent terms are zero. This gives by = 10 4+ 2 = 12. So, there are min(47,12) = 12
zeros at the end of 50!.
Let 25! = 2925%2¢y where ¢y is not a multiple of 2 or 5. Working out ay we get

25 [25] [25] 25
5] 2] 1 2]

2[4 8] "6
since all subsequent terms are zero. This gives as = 124+ 6 + 3 + 1 = 22. Working out b, we get
[25] + (257
1 5] [25]°
since all subsequent terms are zero. This gives bo = 5+ 1 = 6. Let (gg) = %%'5, = 2035b3 ¢4

where c3 is not a multiple of 2 or 5. Then a3 = a1 — 2a9 = 3 and bs = b; — 2b, = 0. So, there
are min(3,0) = 0 zeros at the end of (gg)

10 marks. First part in lectures, second part similar to exercise sheet question.

(iii) The typical term in the expression (ii) for the power of p dividing (ab)! is [(ab)/p*] and by
(i) this is > a[b/p*], which is a times the corresponding term in the expression (ii) for the power
of p dividing b!. This applies to all the terms in the expression so adding them up gives that
the power of p dividing (ab)! is > a times the power of p dividing b!. It now follows that, for all
primes p, the prime-power expressions for (ab)!, b! and (b!)* have the form

(ab)!'=...p"..., bl=...p°..., (@B)*=...p%...,

and 7 > sa. Hence by prime-power decompositions, (b)!*|(ab)!.
6 marks. Unseen.



2. For n > 1 define ¢(n) to be the number of integers z satisfying 1 < z < n and (z,n) = 1.
Let {z1,...,z;} be complete set of distinct residues (mod n) which are coprime to n, so that
k = ¢(n). Let (a,n) = 1. Then each az; is coprime to n (since both of a and z; are coprime to
n) and az; = ar; <= z; = z; (since (a,n) = 1) <= i = j. It follows that az1, ..., azy are all
distinct (mod n) and are all coprime to n, giving that {az1,...,az} is the same set (mod n) as
{z1,...,z}. Hence (azi)(azs) ... (azy) = x129 ... 2}, S0 a¥(z129 ... 21) = 2129 ... 21, (mod n).
But (z122...xk,n) = 1 (since each (z;,n) = 1), and so we can cancel 21z ... ) from both sides
to give ¥ = 1, that is: a®™ =1 (mod n), as required.

6 marks. Bookwork from lectures.

(i) Since (a,b) = 1 there exist integers s,t satisfying as + bt = 1. Multiplying by ¢ gives
(as)c + (bt)c = ¢, that is: a(sc) + (bc)t = ¢; the first term of the LHS has a factor of a, and the
second term is also divisible by a, by our given assumption that a|bc. Hence a also divides the
RHS, that is a|c, as required. Can alternatively use prime power decompositions.

3 marks. FEzample from lectures.

(ii) Since a|c and b|c, write ¢ = ja,c = kb. Then ja = kb so alkb. But (a,b) = 1, so (using (i)),
alk. Writing k = £a, we have that ¢ = kb = £ab, and so ab|c, as required.
4 marks. Seen similar on ezrercise sheet.

(iii) z = y (mod a) and z = y (mod b) <= a|(x—y) and b|(z —y) <= ab|(z—y) [the forward
direction from (ii), the reverse direction from a|ab and b|ab] <= z =y (mod ab).
3 marks. Seen similar in lectures.

(iv) Since (a,b) = 1, we have b*(® = 1 (mod a) by Euler’s Theorem, and so a?®) + p#(®) =
1 (mod a), since a®® = 0%®) = 0 (mod a). Similarly a®® + p%® = 1 (mod b). Hence
a®®) + p%(@) =1 (mod ab), by (iii).

4 marks. Unseen.

3.

(i) A Carmichael number is any n such that n is composite, and, for every b with (b,n) = 1,
we have 5" ! = 1 mod n. Let n = q;...q; be as in the question. Then n is composite since
k > 2. Let (b,n) = 1. Then (b,q;) = 1 for all i. By Fermat’s theorem, b%~! = 1 mod ¢;. But
n —1 = k;(g; — 1) say, since we are given that (¢; — 1)|(n — 1). Hence

bt = (bqi_l)ki =1 (mod g¢).

Since the congruence b"~! holds mod g; for each i, it holds mod the lcm of the ¢; which is their
product n since they are pairwise coprime. That is: 5" ! =1 (mod n), as required.
6 marks. Bookwork from lectures.

(i) We know any prime p > 3 satisfies p = +1 (mod 6). If p = —1 (mod 6) then we would have
2p — 1 = —3 (mod 6), which would contradict 2p — 1 prime. So, we can’t have p = —1 (mod 6),
which means we must have p = 1 (mod 6). Now, n—1 = p(2p—1)(3p—2)—1 = (p—1)(6p*> —p+1);
further, (6p? — p + 1) is a multiple of 6 (since p = 1 (mod 6)). Hence, all of p — 1, 2(p — 1),
3(p — 1) are factors of n — 1, that is, all of: p—1, (2p —1) — 1, (3p —2) — 1 are factors of n — 1.
Hence, n is a product of distinct primes, ¢ = p, g2 = 2p — 1, g3 = 3p — 2, with (¢; — 1)|(n — 1)
for all 4, and so n is a Carmichael number by (i).

Checking: p = 5 gives 2p — 1 = 9 nonprime, p = 7 gives 2p — 1 = 13 and 3p — 2 = 19,
both prime. So, p = 7 is the smallest p > 3 for which p,2p — 1,3p — 2 are all prime, and so
7-13-19 = 1729 is the smallest Carmichael number of this form.



8 marks. Seen similar on exercise sheet.

(iii) If k = 2 then n = 1o and son—1 = q1g2 — 1 = ¢1 — 1 (mod g2 — 1), since g2 = (g2 —1)+1 =
0+1=1 (mod g2 — 1). But we are given that (g2 —1)|(n — 1) and son — 1 =0 (mod ¢ — 1).
Hence ¢; —1 = 0 (mod g2 — 1), that is: (g2 —1)|(g1 — 1), giving g2 — 1 < ¢; — 1, which contradicts
g1 < q2. This shows that & = 2 is impossible in (i), and (ii) gives an example with £ = 3, so
that k£ = 3 is the minimum possible.

6 marks. Unseen.

4. Miller’s test on n to base b (where n be an odd positive integer and b coprime to n). We use
(z) to denote the least positive residue of z mod n.

Step 1. Let k =n — 1, (b¥) = r. If r = 1 then continue, otherwise n fails the test.

While & is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace by the new value of (b*).

When £ fails to be even or r fails to be 1:

If r=1o0r n—1 then n passes the test.

If r #1 and r # n — 1 then n fails the test.

5 marks. From lectures.

If n = p, prime, then » ' = 1 (mod p) by Fermat’s Theorem, and so n passes Step 1. At
any application of Step 2, we have k even and b* = 1 (mod p), so that (b¥/2)2 = b¥ = 1 (mod p),
and so b*/2 = £1 =1 or p — 1 (mod p) [using the fact that, for p prime, 22 = 1 has only the
solutions z = +1 (mod p)]. If b¥/2 = p — 1 (mod p) or k/2 is odd, then p passes Miller’s test to
base b, otherwise Step 2 is repeated. Therefore, when Miller’s test terminates, p will pass.

5 marks. From lectures.

(i) Base b = 12; check (12,133) = 1 so that Miller’s test is applicable. Now, 123 = 1728 =
—1 (mod 133), so 12132 = (123)* = (~1)** =1 (mod 133). Since 133 = 7 x 19 is composite,
this gives that 133 is a pseudoprime to base 12. Continuing to Step 2 of Miller’s Test: 1256 =
(123)22 = (-1)?2 = 1 (mod 133), and 1233 = (123)!! = (—1)!! = —1 (mod 133), so 133 passes
Miller’s Test to base 12. Hence 133 is a strong pseudoprime to base 12.

3 marks. Seen similar on an exercise sheet.

(ii) Base b = 11; check (11,133) = 1. Now, 113 = 1331 = 1 (mod 133), so 11132 = (113)# =
1** = 1 (mod 133). Hence 133 is a pseudoprime to base 11. Continuing to Step 2 of Miller’s
Test: 110 = (113)22 = 122 = 1 (mod 133), and 113 = (113)! = 1! = 1 (mod 133), so 133
passes Miller’s Test to base 11, since exponent 33 is odd. Hence 133 is a strong pseudoprime to
base 11.

2 marks. Seen similar on an exercise sheet.

(iii) Base b = 8; check (8,133) = 1. Now, 8% = 512 = 113 (mod 133), and 8% = (8%)2 = 1132 =
12769 = 1 (mod 133), so 8132 = (86)?2 = 122 = 1 (mod 133). Hence 133 is a pseudoprime
to base 8. Continuing to Step 2 of Miller’s Test: 856 = (86)!1 = 1! = 1 (mod 133), and
833 = (85)°.83 =1°- 113 = 113 (mod 133), so 133 fails Miller’s Test to base 8, since 133 is not
congruent to 1 or 132 (mod 133). Hence 133 is not a strong pseudoprime to base 8.

3 marks. Seen similar on an ezercise sheet.

(iv) Base b = 2; check (2,133) = 1. Now, 2132 = (23)* = 8% = (86)7.82 = 17 . 64 [from (iii)]
= 64 (mod 133), which is not congruent to 1 (mod 133), and so 133 is neither a pseudoprime
nor a strong pseudoprime to base 2, and fails Miller’s Test to base 2.

2 marks. Seen similar on an exercise sheet.

5.
(i) ‘g is a primitive root mod n’ means that the order of g mod n is ¢(n), i.e. the smallest k& > 0
for which g¥ =1 mod n is k = ¢(n).



Let g be a primitive root mod n. Assume that ¢" = ¢°* (mod n), and without loss of
generality take r > s. Since (g,n) = 1 (which follows from ¢ being a primitive root), we can
cancel g° from both sides to get ¢"~* = 1 (mod n), and so ord,g|(r — s), giving ¢(n)|(r — s),
ie. r = s (mod ¢(n)). Conversely, r = s (mod ¢(n)) = ¢(n)|(r —s) = ¢"°* =1 (mod n) =
g" = ¢° (mod n).

4 marks. Bookwork from lectures.

(ii) Working out powers of 3 mod 34 gives

k|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3*mod34|3 9 27 13 5 15 11 33 31 25 7 21 29 19 23 1
This shows that ordss3 = 16 = ¢(34) and so 3 is a primitive root mod 34. Now, using
the table, 15 = 21 (mod 34) <= (35)% = 3'2 (mod 34) <= 35 = 3'2 (mod 34) <
6z = 12 (mod ¢(34)) <= 62 =12 (mod 16) <= 3z =6 (mod 8) <= 3-3z =36 (mod 8)
< 1z =2 (mod 8).
Working out the powers of 13 mod 34 gives
k|1 2 3 4
13* mod 34 |13 33 21 1
This shows that ordszs13 =4 # 16 = ¢(34), and so 13 is not a primitive root mod 34.
8 marks. Seen similar on ezercise sheet.

(iii) If 2 = 1 (mod n) then (z,n) = 1 (since any common factor of z and n would have to
divide 1), and so we can write z = g¥, for some k (since powers of a primitive root give all
numbers mod n which are coprime to n). Then 22 = 1 (mod n) <= (¢¥)? = 1 (mod n)
< g% = ¢° (mod n) <= 2k =0 (mod ¢(n)) <= k =0 (mod ¢(n)/2) = k =
0,¢(n)/2 (mod ¢(n)) < z = g¢° ¢g*™/2 (mod n) [note that, since n > 2 we must have ¢(n)
even, and so ¢(n)/2 is an integer]. Thus, there are exactly two solutions to the congruence
z? = 1 (mod n). Further, z = 1 and x = —1 are distinct solutions to this congruence, and so
they must be the only solutions, as required.

5 marks. Seen similar in lectures.

(iv) We are given: n = 4h, h > 1 and x = 2h + 1. Then 22 = (2h +1)2 = 4h? + 4h + 1 =
4h(h4+1)+1 =1 (mod n). But z is not congruent to 1 or —1 (mod n) [since 1 < 2h+1 < n—1],
and so n cannot have a primitive root by (iii).

3 marks. Unseen.

6.
(i) Given m, an integer not divisible by 2 or 5, consider the standard equations which occur in
the calculation of the decimal expansion of %:

1 = i,
10 = mqi + 12,
10ry = mgo + 73, etc.,

where 0 < r; < m and 0 < ¢; <9 for each i so that the g; are the decimal digits.
All congruences are mod m in what follows. Clearly

rm=1 ro=10r =10, r3=10ry = 102, etc.,

and generally 711 = 107. Tt is also clear that the calculation of the decimal places ¢; repeats
when one of the remainders r; becomes equal to a previous remainder 7;. I claim that when

4



this happens, i = 1. Proof: If i > 1 and rjyy = r; (k > 1) is the first repeat then 10r; 41 =
Tivk = 7 = 10r;_1 and 10 can be cancelled since 2/ m and 5/ m, so that r; 1,4 = 7—1 and
consequently these remainders are equal since both are between 1 and m—1. But this contradicts
the assumption that r;1x = r; is the first repeat.

Thus recurrence starts with rg11 =71 = 1, i.e. ¢1 = qg+1,92 = qr+2 and so on. Thus k is the
smallest number such that 10¥ = 1, i.e. the order of 10 mod m is k, which is the period length.
8 marks. Bookwork from lectures.

(i) z¥ = 1 (mod mn) <= z¥ =1 (mod m) and z*¥ = 1 (mod n) [since (m,n) = 1] <
ordy,z|k and ord,z|k <= k is a common multiple of ord,,z and ord,z <= k is a multiple
of [ord,,z,ord,z]. Hence, ord,,,x = [ord,z,ord,z], as required.

4 marks. Seen similar in lectures.

(iii) As usual, ord,,10 is the smallest £ > 0 for which 10¥* = 1 (mod m). In each case, by (i),
this is the same as the decimal period length of %
10! =10, 102 =9, 103 = 6, 10* = 4, 10° =5, 10° = 1 (mod 7), so ord;10 = 6.
10! =10, 102 =1 (mod 11), so ord;10 = 2.
10! =10, 102 =9, 103 =12, 10* = 3, 10° = 4, 10° = 1 (mod 13), so ord;310 = 6.
10 =10, 102 = 15, 10> = 14, 10* =4, 10° =6, 10 =9, 10" =5, 108 =16, 10° = 7, 1010 = 2,
101 =3, 102 =13, 1013 =11, 10'* = 8, 10'5 = 12, 10'6 = 1 (mod 17), so ord;710 = 16.
ord7710 = [ord;10,0rd;110] = [6,2] = 6, by (ii).
ordg; 10 = [ord710, 0ord;310] = [6, 6] = 6, by (ii).
OI‘d14310 = [OI‘dnl0,0I‘dlgl()] = [2,6] = 6, by (ii).
OI‘d221 10 = [ord1310,ord1710] = [6, 16] = 48, by (ii).
Can also, if desired, reduce computations by using ord,;10|¢(m).
8 marks. Unseen.

7.
(i) o(n) = the sum of the divisors of n which are > 1.
p? has divisors 1,p,p?,...p* 1, p? s0 o(p®) = 1+ p+p? +...p* = (p**! —1)/(p — 1).
A S YL |
e N

Writing n = p{'* ... p,* (prime power factorization), o(n) =
4 marks. From lectures.

(ii) Here is a table of values of o(p®) for small p and a. Since all rows and columns are strictly
increasing, any further entries would be greater than 32 and so are irrelevant.

al p—>| 2 3 5 7 11 13 17 .. 31
1 3 4 6 8 12 14 18 .. 32
2 7 13 31 57
3 15 40
4 31
5 63

Now the following give all the ways of writing 32 as a product of entries in different columns
of the table: 32 or 4 - 8. These give
n =31 or 3-7, that is: n» = 31 or 21 are the only solutions to o(n) = 32.
7 marks. Seen similar on exercise sheet.

(iii) o(n) = o(2%)o(2*+ —1) [since (2%,2°T! —1) = 1]. But 0(2°) = (2°T1 -1)/(2—1) = 28*1 -1,
by the formula in (i), and o(25*! — 1) = 1 + (2**1 — 1) [since 25! — 1 is prime]. So:

o(n) = (2571 — 1)(1 + (257! — 1)) = 25F1(25FL — 1) = 2(25(2°! — 1)) = 2n. Hence n is
perfect.
4 marks. From lectures.



(iv) s(p) = 1 and s(p?) = 1 + p for p prime. Any n > 1 is divisible by some prime p, and if n is
neither prime nor the square of a prime, we must have p # n and p? # n. Hence, 1,p,n/p are
all distinct divisors of n, and all are # n. Hence s(n) > 1+ p + n/p, as required.

Now, suppose that s(n) = 7. Note that 7 is none of: 0,1,1 + p for any prime p, so that n is
not 1, n is not prime, and n is not the square of a prime. So, s(n) > 14 p+n/p, which becomes:
7>14+p+n/pandso: n/p<6—p,giving

n<6bp-p*=9-(p—3)°<09.

Thus, we need only check n up to 9. In fact: s(1) =0, s(2) =1, s(3) =1, s(4) =3, s(5) =1,
s(6) =6, s(7) =1, s(8) = 7 and s(9) = 4. Conclusion: n = 8 is the only n for which s(n) = 7.
5 marks. Hard, but seen similar in lectures.

8.
(i) First, note P, = agQo —FPo=ap-1—-0=ag = [\/’ﬁ]
and Q1 = (n — P?)/Qo = (n— P?)/Qo = (n — a3)/1 =n — a?.

Suppose Qy = 1 for some k > 1. Then zx = P + v/n so ax = [zx] = Py + [v/n] = Py + ao.
That is, ap — P, = ag. Hence,

Pey1 =arQr — Py =ap — Py =a9 =Py and Qpy1 = (n — P2,)/Qr = (n —a3)/1 = Q1.
Furthermore, 2511 = (Pyt1 + /1) /Qr+1 = (P1 + v/n)/Q1 = z1 and s0 ag41 = [z41] = [21] =
a1. This means that rows P, Q1, 1,01 and Pyxi1,Qkt1,Tk+1,0k+1 are identical and so clearly
ak4+1 = G1,0k 12 = A2, .... S0 the continued fraction is [ag, a1, .-, ax)-

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k ‘ P, Qi T ag
0| O 1 vn oo d
1| d d R o
2| d 1 d++/n 2d
Justification of ag, a1, a9 as follows.
ao = [v/n]. But, foralld > 1, d? < d?* +d < d?*+2d+1 and so d < Vd?2 +d < d+1, so that
[v/n] =d, ie. ag =d.
d d
5] - 14 - 6] =2

alz d d =

az = [d+v/n] = [d+ [ya]] = [d+d] = [2d] = 2d.
The fact that Q2 = 1 signals recurrence, so that /n = [d, 2, 2d], as required.
8 marks. Seen similar on exercise sheet.
(iii) d = 4 gives n = 20 i.e. V20 =[4,2,8].
Using initial values pg = ag,qo = 1,p1 = apa1 + 1, g1 = a1 together with the standard recurrence

relations: pgi1 = agy1Pk + Pk—1 and gxy1 = ag11qk + qr—1 for convergents p/q of 4/n, and the
identity p? — ngi = (=) 1 Qpr1, we get

k| ag Pk Gk
0 4 4 1
1 2 9

2 8 76 17
3 2 161 36
4 8 1364 305
5 2 2889 646

This gives three solutions: £ =9,y =2 and x = 161,y = 36 and = = 2889,y = 646.
6 marks. Seen similar on exercise sheet.



