Solutions to 2MP62 May 1999 examination

1.

(i) From $x-1 < [x] \le x$, we deduce that, if $[x] \ge n$ then $x \ge [x] \ge n$. Conversely, if $x \ge n$, then [x] > x-1 gives [x] > n-1. But [x] is an integer, so $x \ge n$.

Replace x by ay and n by a[y]: we have

$$[ay] \ge a[y] \iff ay \ge a[y].$$

But the second inequality follows immediately from $y \geq [y]$ and $a \geq 0$.

4 marks. First part from exercise sheet, second part unseen.

(ii) The number of positive multiples of an integer k>0 which are $\leq n$ is clearly $\left[\frac{n}{k}\right]$. To count the power of p dividing n!, since p is prime, it is enough to count the powers of p dividing $1,2,3,\ldots,n$ and add these powers up. Now, the number of multiples of p among $1,2,3,\ldots,n$ is $\left[\frac{n}{p}\right]$. Each multiple of p^2 among $1,2,3,\ldots,n$ gives an additional power of p dividing into n!, giving $\left[\frac{n}{p}\right]+\left[\frac{n}{p^2}\right]$ so far. Continuing in this way we get that the total power of p is as in the given formula.

Let $50! = 2^{a_1} 5^{b_1} c_1$ where c_1 is not a multiple of 2 or 5. Then the power of 10 dividing 50! is clearly the smaller of a_1 and b_1 . Working out a_1 we get

$$\left[\frac{50}{2}\right] + \left[\frac{50}{4}\right] + \left[\frac{50}{8}\right] + \left[\frac{50}{16}\right] + \left[\frac{50}{32}\right],$$

since all subsequent terms are zero. This gives $a_1 = 25 + 12 + 6 + 3 + 1 = 47$. Working out b_1 we get

$$\left[\frac{50}{5}\right] + \left[\frac{50}{25}\right],$$

since all subsequent terms are zero. This gives $b_1 = 10 + 2 = 12$. So, there are min(47,12) = 12 zeros at the end of 50!.

Let $25! = 2^{a_2} 5^{b_2} c_2$ where c_2 is not a multiple of 2 or 5. Working out a_2 we get

$$\left[\frac{25}{2}\right] + \left[\frac{25}{4}\right] + \left[\frac{25}{8}\right] + \left[\frac{25}{16}\right],$$

since all subsequent terms are zero. This gives $a_2 = 12 + 6 + 3 + 1 = 22$. Working out b_2 we get

$$\left[\frac{25}{5}\right] + \left[\frac{25}{25}\right],$$

since all subsequent terms are zero. This gives $b_2 = 5 + 1 = 6$. Let $\binom{50}{25} = \frac{50!}{25!25!} = 2^{a_3} 5^{b_3} c_3$ where c_3 is not a multiple of 2 or 5. Then $a_3 = a_1 - 2a_2 = 3$ and $b_3 = b_1 - 2b_2 = 0$. So, there are $\min(3,0) = 0$ zeros at the end of $\binom{50}{25}$.

10 marks. First part in lectures, second part similar to exercise sheet question.

(iii) The typical term in the expression (ii) for the power of p dividing (ab)! is $[(ab)/p^k]$ and by (i) this is $\geq a[b/p^k]$, which is a times the corresponding term in the expression (ii) for the power of p dividing b!. This applies to all the terms in the expression so adding them up gives that the power of p dividing (ab)! is $\geq a$ times the power of p dividing p!. It now follows that, for all primes p, the prime-power expressions for (ab)!, p! and $(b!)^a$ have the form

$$(ab)! = \dots p^r \dots, \qquad b! = \dots p^s \dots, \qquad (b!)^a = \dots p^{sa} \dots,$$

and $r \geq sa$. Hence by prime-power decompositions, $(b)!^a|(ab)!$.

6 marks. Unseen.

2. For $n \geq 1$ define $\phi(n)$ to be the number of integers x satisfying $1 \leq x \leq n$ and (x, n) = 1. Let $\{x_1, \ldots, x_k\}$ be complete set of distinct residues (mod n) which are coprime to n, so that $k = \phi(n)$. Let (a, n) = 1. Then each ax_i is coprime to n (since both of a and x_i are coprime to n) and $ax_i \equiv ax_j \iff x_i \equiv x_j$ (since (a, n) = 1) $\iff i = j$. It follows that ax_1, \ldots, ax_k are all distinct (mod n) and are all coprime to n, giving that $\{ax_1, \ldots, ax_k\}$ is the same set (mod n) as $\{x_1, \ldots, x_k\}$. Hence $(ax_1)(ax_2) \ldots (ax_k) \equiv x_1x_2 \ldots x_k$, so $a^k(x_1x_2 \ldots x_k) \equiv x_1x_2 \ldots x_k$ (mod n). But $(x_1x_2 \ldots x_k, n) = 1$ (since each $(x_i, n) = 1$), and so we can cancel $x_1x_2 \ldots x_k$ from both sides to give $a^k \equiv 1$, that is: $a^{\phi(n)} \equiv 1 \pmod{n}$, as required.

6 marks. Bookwork from lectures.

(i) Since (a, b) = 1 there exist integers s, t satisfying as + bt = 1. Multiplying by c gives (as)c + (bt)c = c, that is: a(sc) + (bc)t = c; the first term of the LHS has a factor of a, and the second term is also divisible by a, by our given assumption that a|bc. Hence a also divides the RHS, that is a|c, as required. Can alternatively use prime power decompositions.

3 marks. Example from lectures.

(ii) Since a|c and b|c, write c = ja, c = kb. Then ja = kb so a|kb. But (a,b) = 1, so (using (i)), a|k. Writing $k = \ell a$, we have that $c = kb = \ell ab$, and so ab|c, as required.

4 marks. Seen similar on exercise sheet.

(iii) $x \equiv y \pmod{a}$ and $x \equiv y \pmod{b} \iff a|(x-y) \pmod{b}|(x-y) \iff ab|(x-y)$ [the forward direction from (ii), the reverse direction from a|ab and $b|ab| \iff x \equiv y \pmod{ab}$.

3 marks. Seen similar in lectures.

(iv) Since (a,b)=1, we have $b^{\phi(a)}\equiv 1\pmod a$ by Euler's Theorem, and so $a^{\phi(b)}+b^{\phi(a)}\equiv 1\pmod a$, since $a^{\phi(b)}\equiv 0\pmod a$. Similarly $a^{\phi(b)}+b^{\phi(a)}\equiv 1\pmod b$. Hence $a^{\phi(b)}+b^{\phi(a)}\equiv 1\pmod a$, by (iii).

4 marks. Unseen.

3.

(i) A Carmichael number is any n such that n is composite, and, for every b with (b, n) = 1, we have $b^{n-1} \equiv 1 \mod n$. Let $n = q_1 \dots q_k$ be as in the question. Then n is composite since $k \geq 2$. Let (b, n) = 1. Then $(b, q_i) = 1$ for all i. By Fermat's theorem, $b^{q_i-1} \equiv 1 \mod q_i$. But $n-1 = k_i(q_i-1)$ say, since we are given that $(q_i-1)|(n-1)$. Hence

$$b^{n-1} = \left(b^{q_i-1}\right)^{k_i} \equiv 1 \pmod{q_i}.$$

Since the congruence b^{n-1} holds mod q_i for each i, it holds mod the lcm of the q_i which is their product n since they are pairwise coprime. That is: $b^{n-1} \equiv 1 \pmod{n}$, as required.

6 marks. Bookwork from lectures.

(ii) We know any prime p > 3 satisfies $p \equiv \pm 1 \pmod{6}$. If $p \equiv -1 \pmod{6}$ then we would have $2p-1 \equiv -3 \pmod{6}$, which would contradict 2p-1 prime. So, we can't have $p \equiv -1 \pmod{6}$, which means we must have $p \equiv 1 \pmod{6}$. Now, $n-1=p(2p-1)(3p-2)-1=(p-1)(6p^2-p+1)$; further, $(6p^2-p+1)$ is a multiple of 6 (since $p \equiv 1 \pmod{6}$). Hence, all of p-1, 2(p-1), 3(p-1) are factors of n-1, that is, all of: p-1, (2p-1)-1, (3p-2)-1 are factors of n-1. Hence, n is a product of distinct primes, $q_1=p$, $q_2=2p-1$, $q_3=3p-2$, with $(q_i-1)|(n-1)$ for all i, and so n is a Carmichael number by (i).

Checking: p=5 gives 2p-1=9 nonprime, p=7 gives 2p-1=13 and 3p-2=19, both prime. So, p=7 is the smallest p>3 for which p,2p-1,3p-2 are all prime, and so $7\cdot 13\cdot 19=1729$ is the smallest Carmichael number of this form.

8 marks. Seen similar on exercise sheet.

(iii) If k=2 then $n=q_1q_2$ and so $n-1=q_1q_2-1\equiv q_1-1\pmod{q_2-1}$, since $q_2=(q_2-1)+1\equiv 0+1\equiv 1\pmod{q_2-1}$. But we are given that $(q_2-1)|(n-1)$ and so $n-1\equiv 0\pmod{q_2-1}$. Hence $q_1-1\equiv 0\pmod{q_2-1}$, that is: $(q_2-1)|(q_1-1)$, giving $q_2-1\leq q_1-1$, which contradicts $q_1< q_2$. This shows that k=2 is impossible in (i), and (ii) gives an example with k=3, so that k=3 is the minimum possible.

6 marks. Unseen.

4. Miller's test on n to base b (where n be an odd positive integer and b coprime to n). We use $\langle x \rangle$ to denote the least positive residue of $x \mod n$.

Step 1. Let k = n - 1, $\langle b^k \rangle = r$. If r = 1 then continue, otherwise n fails the test.

While k is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of $\langle b^k \rangle$.

When k fails to be even or r fails to be 1:

If r = 1 or n - 1 then n passes the test.

If $r \neq 1$ and $r \neq n-1$ then n fails the test.

5 marks. From lectures.

If n=p, prime, then $b^{p-1}\equiv 1\pmod p$ by Fermat's Theorem, and so n passes Step 1. At any application of Step 2, we have k even and $b^k\equiv 1\pmod p$, so that $(b^{k/2})^2\equiv b^k\equiv 1\pmod p$, and so $b^{k/2}\equiv \pm 1\equiv 1$ or $p-1\pmod p$ [using the fact that, for p prime, $x^2\equiv 1$ has only the solutions $x\equiv \pm 1\pmod p$]. If $b^{k/2}\equiv p-1\pmod p$ or k/2 is odd, then p passes Miller's test to base b, otherwise Step 2 is repeated. Therefore, when Miller's test terminates, p will pass.

5 marks. From lectures.

(i) Base b=12; check (12,133)=1 so that Miller's test is applicable. Now, $12^3=1728\equiv -1\pmod{133}$, so $12^{132}\equiv (12^3)^{44}\equiv (-1)^{44}\equiv 1\pmod{133}$. Since $133=7\times 19$ is composite, this gives that 133 is a pseudoprime to base 12. Continuing to Step 2 of Miller's Test: $12^{66}\equiv (12^3)^{22}\equiv (-1)^{22}\equiv 1\pmod{133}$, and $12^{33}\equiv (12^3)^{11}\equiv (-1)^{11}\equiv -1\pmod{133}$, so 133 passes Miller's Test to base 12. Hence 133 is a strong pseudoprime to base 12.

3 marks. Seen similar on an exercise sheet.

(ii) Base b = 11; check (11, 133) = 1. Now, $11^3 = 1331 \equiv 1 \pmod{133}$, so $11^{132} \equiv (11^3)^{44} \equiv 1^{44} \equiv 1 \pmod{133}$. Hence 133 is a pseudoprime to base 11. Continuing to Step 2 of Miller's Test: $11^{66} \equiv (11^3)^{22} \equiv 1^{22} \equiv 1 \pmod{133}$, and $11^{33} \equiv (11^3)^{11} \equiv 1^{11} \equiv 1 \pmod{133}$, so 133 passes Miller's Test to base 11, since exponent 33 is odd. Hence 133 is a strong pseudoprime to base 11.

2 marks. Seen similar on an exercise sheet.

(iii) Base b=8; check (8,133)=1. Now, $8^3=512\equiv 113\pmod{133}$, and $8^6=(8^3)^2\equiv 113^2=12769\equiv 1\pmod{133}$, so $8^{132}\equiv (8^6)^{22}\equiv 1^{22}\equiv 1\pmod{133}$. Hence 133 is a pseudoprime to base 8. Continuing to Step 2 of Miller's Test: $8^{66}\equiv (8^6)^{11}\equiv 1^{11}\equiv 1\pmod{133}$, and $8^{33}=(8^6)^5\cdot 8^3\equiv 1^5\cdot 113\equiv 113\pmod{133}$, so 133 fails Miller's Test to base 8, since 133 is not congruent to 1 or 132 (mod 133). Hence 133 is not a strong pseudoprime to base 8.

3 marks. Seen similar on an exercise sheet.

(iv) Base b=2; check (2,133)=1. Now, $2^{132}=(2^3)^{44}=8^{44}=(8^6)^7\cdot 8^2\equiv 1^7\cdot 64$ [from (iii)] $\equiv 64\pmod{133}$, which is not congruent to 1 (mod 133), and so 133 is neither a pseudoprime nor a strong pseudoprime to base 2, and fails Miller's Test to base 2.

2 marks. Seen similar on an exercise sheet.

5.

(i) 'g is a primitive root mod n' means that the order of g mod n is $\phi(n)$, i.e. the smallest k > 0 for which $g^k \equiv 1 \mod n$ is $k = \phi(n)$.

Let g be a primitive root mod n. Assume that $g^r \equiv g^s \pmod{n}$, and without loss of generality take $r \geq s$. Since (g, n) = 1 (which follows from g being a primitive root), we can cancel g^s from both sides to get $g^{r-s} \equiv 1 \pmod{n}$, and so $\operatorname{ord}_n g|(r-s)$, giving $\phi(n)|(r-s)$, i.e. $r \equiv s \pmod{\phi(n)}$. Conversely, $r \equiv s \pmod{\phi(n)} \Rightarrow \phi(n)|(r-s) \Rightarrow g^{r-s} \equiv 1 \pmod{n} \Rightarrow g^r \equiv g^s \pmod{n}$.

4 marks. Bookwork from lectures.

(ii) Working out powers of 3 mod 34 gives

This shows that $\operatorname{ord}_{34}3 = 16 = \phi(34)$ and so 3 is a primitive root mod 34. Now, using the table, $15^x \equiv 21 \pmod{34} \iff (3^6)^x \equiv 3^{12} \pmod{34} \iff 3^{6x} \equiv 3^{12} \pmod{34} \iff 6x \equiv 12 \pmod{6} \iff 3x \equiv 6 \pmod{8} \iff 3 \cdot 3x \equiv 3 \cdot 6 \pmod{8} \iff x \equiv 2 \pmod{8}.$

Working out the powers of 13 mod 34 gives

This shows that $\operatorname{ord}_{34}13 = 4 \neq 16 = \phi(34)$, and so 13 is not a primitive root mod 34.

8 marks. Seen similar on exercise sheet.

(iii) If $x^2 \equiv 1 \pmod n$ then (x,n) = 1 (since any common factor of x and n would have to divide 1), and so we can write $x \equiv g^k$, for some k (since powers of a primitive root give all numbers mod n which are coprime to n). Then $x^2 \equiv 1 \pmod n \iff (g^k)^2 \equiv 1 \pmod n \iff g^{2k} \equiv g^0 \pmod n \iff 2k \equiv 0 \pmod \phi(n) \iff k \equiv 0 \pmod \phi(n)/2 \iff k \equiv 0, \phi(n)/2 \pmod \phi(n) \iff x \equiv g^0, g^{\phi(n)/2} \pmod n$ [note that, since n > 2 we must have $\phi(n)$ even, and so $\phi(n)/2$ is an integer]. Thus, there are exactly two solutions to the congruence $x^2 \equiv 1 \pmod n$. Further, $x \equiv 1$ and $x \equiv -1$ are distinct solutions to this congruence, and so they must be the only solutions, as required.

5 marks. Seen similar in lectures.

(iv) We are given: n = 4h, h > 1 and x = 2h + 1. Then $x^2 = (2h + 1)^2 = 4h^2 + 4h + 1 = 4h(h+1) + 1 \equiv 1 \pmod{n}$. But x is not congruent to 1 or $-1 \pmod{n}$ [since 1 < 2h + 1 < n - 1], and so n cannot have a primitive root by (iii).

3 marks. Unseen.

6.

(i) Given m, an integer not divisible by 2 or 5, consider the standard equations which occur in the calculation of the decimal expansion of $\frac{1}{m}$:

$$egin{array}{lcl} 1 & = & r_1, \ 10r_1 & = & mq_1 + r_2, \ 10r_2 & = & mq_2 + r_3, \ {
m etc.}, \end{array}$$

where $0 < r_i < m$ and $0 \le q_i \le 9$ for each i so that the q_i are the decimal digits.

All congruences are mod m in what follows. Clearly

$$r_1 \equiv 1$$
, $r_2 \equiv 10r_1 \equiv 10$, $r_3 \equiv 10r_2 \equiv 10^2$, etc.,

and generally $r_{j+1} \equiv 10^j$. It is also clear that the calculation of the decimal places q_i repeats when one of the remainders r_j becomes equal to a previous remainder r_i . I claim that when

this happens, i=1. Proof: If i>1 and $r_{i+k}=r_i$ $(k\geq 1)$ is the first repeat then $10r_{(i+k)-1}\equiv$ $r_{i+k} = r_i \equiv 10r_{i-1}$ and 10 can be cancelled since $2 \nmid m$ and $5 \nmid m$, so that $r_{i-1+k} \equiv r_{i-1}$ and consequently these remainders are equal since both are between 1 and m-1. But this contradicts the assumption that $r_{i+k} = r_i$ is the first repeat.

Thus recurrence starts with $r_{k+1} = r_1 = 1$, i.e. $q_1 = q_{k+1}, q_2 = q_{k+2}$ and so on. Thus k is the smallest number such that $10^k \equiv 1$, i.e. the order of 10 mod m is k, which is the period length. 8 marks. Bookwork from lectures.

(ii) $x^k \equiv 1 \pmod{mn} \iff x^k \equiv 1 \pmod{m} \text{ and } x^k \equiv 1 \pmod{n} \text{ [since } (m,n)=1] \iff$ $\operatorname{ord}_m x | k$ and $\operatorname{ord}_n x | k \iff k$ is a common multiple of $\operatorname{ord}_m x$ and $\operatorname{ord}_n x \iff k$ is a multiple of $[\operatorname{ord}_m x, \operatorname{ord}_n x]$. Hence, $\operatorname{ord}_{mn} x = [\operatorname{ord}_m x, \operatorname{ord}_n x]$, as required.

4 marks. Seen similar in lectures.

(iii) As usual, ord_m10 is the smallest k > 0 for which $10^k \equiv 1 \pmod{m}$. In each case, by (i). this is the same as the decimal period length of $\frac{1}{m}$

$$10^1 \equiv 10, 10^2 \equiv 9, 10^3 \equiv 6, 10^4 \equiv 4, 10^5 \equiv 5, 10^6 \equiv 1 \pmod{7}$$
, so $\operatorname{ord}_7 10 = 6$.

$$10^1 \equiv 10, 10^2 \equiv 1 \pmod{11}$$
, so $\operatorname{ord}_{11} 10 = 2$.

$$10^1 \equiv 10, 10^2 \equiv 9, 10^3 \equiv 12, 10^4 \equiv 3, 10^5 \equiv 4, 10^6 \equiv 1 \pmod{13}$$
, so $\operatorname{ord}_{13}10 = 6$.

$$10^{1} \equiv 10, \ 10^{2} \equiv 15, \ 10^{3} \equiv 14, \ 10^{4} \equiv 4, \ 10^{5} \equiv 6, \ 10^{6} \equiv 9, \ 10^{7} \equiv 5, \ 10^{8} \equiv 16, \ 10^{9} \equiv 7, \ 10^{10} \equiv 2, \ 10^{11} \equiv 3, \ 10^{12} \equiv 13, \ 10^{13} \equiv 11, \ 10^{14} \equiv 8, \ 10^{15} \equiv 12, \ 10^{16} \equiv 1 \ (\text{mod } 17), \ \text{so } \ \text{ord}_{17}10 = 16.$$

$$\operatorname{ord}_{77}10 = [\operatorname{ord}_710, \operatorname{ord}_{11}10] = [6, 2] = 6, \text{ by (ii)}.$$

$$\operatorname{ord}_{91}10 = [\operatorname{ord}_710, \operatorname{ord}_{13}10] = [6, 6] = 6, \text{ by (ii)}.$$

$$ord_{143}10 = [ord_{11}10, ord_{13}10] = [2, 6] = 6$$
, by (ii).

$$\operatorname{ord}_{221}10 = [\operatorname{ord}_{13}10, \operatorname{ord}_{17}10] = [6, 16] = 48$$
, by (ii).

Can also, if desired, reduce computations by using ord_m $10|\phi(m)$.

8 marks. Unseen.

7.

(i) $\sigma(n) = \text{the sum of the divisors of } n \text{ which are } \geq 1.$

$$p^a$$
 has divisors $1, p, p^2, \dots p^{a-1}, p^a$ so $\sigma(p^a) = 1 + p + p^2 + \dots p^a = (p^{a+1} - 1)/(p-1)$.

$$p^a$$
 has divisors $1, p, p^2, \dots p^{a-1}, p^a$ so $\sigma(p^a) = 1 + p + p^2 + \dots p^a = (p^{a+1} - 1)/(p-1)$. Writing $n = p_1^{n_1} \dots p_k^{n_k}$ (prime power factorization), $\sigma(n) = \frac{p_1^{n_1+1} - 1}{p_1 - 1} \dots \frac{p_k^{n_k+1} - 1}{p_k - 1}$.

4 marks. From lectures.

(ii) Here is a table of values of $\sigma(p^a)$ for small p and a. Since all rows and columns are strictly increasing, any further entries would be greater than 32 and so are irrelevant.

$a\downarrow$	$p \rightarrow$	2	3	5	7	11	13	17	 31	
1		3	4	6	8	12	14	18	 32	
2		7	$\frac{4}{13}$	31	57					
3		15	40							
4		31								
5		63								

Now the following give all the ways of writing 32 as a product of entries in different columns of the table: 32 or $4 \cdot 8$. These give

n=31 or $3\cdot 7$, that is: n=31 or 21 are the only solutions to $\sigma(n)=32$.

7 marks. Seen similar on exercise sheet.

(iii)
$$\sigma(n) = \sigma(2^s)\sigma(2^{s+1}-1)$$
 [since $(2^s, 2^{s+1}-1) = 1$]. But $\sigma(2^s) = (2^{s+1}-1)/(2-1) = 2^{s+1}-1$, by the formula in (i), and $\sigma(2^{s+1}-1) = 1 + (2^{s+1}-1)$ [since $2^{s+1}-1$ is prime]. So:

$$\sigma(n) = (2^{s+1} - 1)(1 + (2^{s+1} - 1)) = 2^{s+1}(2^{s+1} - 1) = 2(2^{s}(2^{s+1} - 1)) = 2n$$
. Hence n is perfect.

4 marks. From lectures.

(iv) s(p) = 1 and $s(p^2) = 1 + p$ for p prime. Any n > 1 is divisible by some prime p, and if n is neither prime nor the square of a prime, we must have $p \neq n$ and $p^2 \neq n$. Hence, 1, p, n/p are all distinct divisors of n, and all are $\neq n$. Hence $s(n) \geq 1 + p + n/p$, as required.

Now, suppose that s(n) = 7. Note that 7 is none of: 0, 1, 1 + p for any prime p, so that n is not 1, n is not prime, and n is not the square of a prime. So, $s(n) \ge 1 + p + n/p$, which becomes: $7 \ge 1 + p + n/p$ and so: $n/p \le 6 - p$, giving

$$n \le 6p - p^2 = 9 - (p - 3)^2 \le 9.$$

Thus, we need only check n up to 9. In fact: s(1) = 0, s(2) = 1, s(3) = 1, s(4) = 3, s(5) = 1, s(6) = 6, s(7) = 1, s(8) = 7 and s(9) = 4. Conclusion: n = 8 is the only n for which s(n) = 7. **5 marks**. Hard, but seen similar in lectures.

8.

(i) First, note $P_1 = a_0Q_0 - P_0 = a_0 \cdot 1 - 0 = a_0 = [\sqrt{n}]$ and $Q_1 = (n - P_1^2)/Q_0 = (n - P_1^2)/Q_0 = (n - a_0^2)/1 = n - a_0^2$.

Suppose $Q_k = 1$ for some $k \ge 1$. Then $x_k = P_k + \sqrt{n}$ so $a_k = [x_k] = P_k + [\sqrt{n}] = P_k + a_0$. That is, $a_k - P_k = a_0$. Hence,

 $P_{k+1} = a_k Q_k - P_k = a_k - P_k = a_0 = P_1 \text{ and } Q_{k+1} = (n - P_{k+1}^2)/Q_k = (n - a_0^2)/1 = Q_1.$ Furthermore, $x_{k+1} = (P_{k+1} + \sqrt{n})/Q_{k+1} = (P_1 + \sqrt{n})/Q_1 = x_1$ and so $a_{k+1} = [x_{k+1}] = [x_1] = a_1$. This means that rows P_1, Q_1, x_1, a_1 and $P_{k+1}, Q_{k+1}, x_{k+1}, a_{k+1}$ are identical and so clearly $a_{k+1} = a_1, a_{k+2} = a_2, \ldots$ So the continued fraction is $[a_0, \overline{a_1, \ldots, a_k}]$.

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k	P_k	Q_k	x_k	a_k
0	0	1	\sqrt{n}	\overline{d}
1	d	d	$\frac{d+\sqrt{n}}{d}$	2
2	d	1	$d + \sqrt[n]{n}$	2d

Justification of a_0, a_1, a_2 as follows.

 $a_0 = [\sqrt{n}]$. But, for all $d \ge 1$, $d^2 < d^2 + d < d^2 + 2d + 1$ and so $d < \sqrt{d^2 + d} < d + 1$, so that $[\sqrt{n}] = d$, i.e. $a_0 = d$.

$$a_1 = \left[\frac{d+\sqrt{n}}{d}\right] = \left[\frac{d+[\sqrt{n}]}{d}\right] = \left[\frac{d+d}{d}\right] = [2] = 2.$$

$$a_2 = [d+\sqrt{n}] = [d+[\sqrt{n}]] = [d+d] = [2d] = 2d.$$

The fact that $Q_2 = 1$ signals recurrence, so that $\sqrt{n} = [d, \overline{2, 2d}]$, as required.

8 marks. Seen similar on exercise sheet.

(iii) d = 4 gives n = 20 i.e. $\sqrt{20} = [4, \overline{2, 8}]$.

Using initial values $p_0 = a_0$, $q_0 = 1$, $p_1 = a_0 a_1 + 1$, $q_1 = a_1$ together with the standard recurrence relations: $p_{k+1} = a_{k+1} p_k + p_{k-1}$ and $q_{k+1} = a_{k+1} q_k + q_{k-1}$ for convergents p/q of \sqrt{n} , and the identity $p_k^2 - nq_k^2 = (-1)^{k+1} Q_{k+1}$, we get

k	a_k	p_k	q_k
0	4	4	1
1	2	9	2
2	8	76	17
3	2	161	36
4	8	1364	305
5	2	2889	646

This gives three solutions: x = 9, y = 2 and x = 161, y = 36 and x = 2889, y = 646.

6 marks. Seen similar on exercise sheet.