1. Let [z] denote, as usual, the greatest integer < z.

(i) Show that the largest power of a prime p dividing n! is

[l

the sum being continued until the terms become zero.
Give an example to show that this may not be the correct power of p dividing
n! when p is not prime.
(ii) Explain why the power of 2 dividing n! is, for n > 1, always greater
than the power of 5 dividing n!.
(iii) Find the number of zeros at the end of 70!, explaining how you get
your answer.

(iv) Reading the decimal digits of n! (n > 1) from left to right, show (using
(ii) or otherwise) that the last nonzero digit is always even.

(i) Explain why

22 = 2 mod 225 <= z? =z mod 9 and mod 25.

Find all the solutions of the congruence 2?2 = z mod 225, stating carefully any

general results on congruences you use in your solution.

(ii) State and prove Fermat’s theorem. Use it to show that, if n is an
integer, then it is not possible to have n? = —1 mod 7. Show more generally that
if n is an integer and p is a prime of the form p = 4k + 3, then p does not divide

2
n® + 1.
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3. Let n be odd and (b,n) = 1. Describe Miller’s test with base b as applied
to n.

Let n» = 257 = 22 + 1. Use 28 = —1 mod 257 to write down the effect of
applying Miller’s test with base 2 to 257.

Now suppose an odd number n passes Miller’s test with base 2.
(i) Suppose that the last step of the test with base 2 has the form

2" =41 modn

for an odd value of r. Show that n also passes Miller’s test with base 4 in the
same number of steps as with base 2. [Hint: Show that, for any £,
2F = +1 mod n = 4* = 1 mod n.]

(ii) Suppose that the last step of the test with base 2 has the form
2"=—-1modn

with r even. Show that n also passes Miller’s test with base 4, in one more step
than it passes in base 2.

Do (i) and (ii) show that every odd n which passes Miller’s test with base 2
also passes with base 47

4. Define Euler’s ¢ function and show that, for a prime p and a > 1, ¢(p*) =
p*(p —1). Write down a general formula for ¢(n).
(i) Make a table of values of ¢(p®) for small primes p and integers a > 1,
and find all values of n for which ¢(n) = 16.

(ii) Let p be a prime such that p = —1 mod 12 and let a be even. Show
that
#(p*) = 2 mod 12.

(iii) Let p be a prime such that p = 5 mod 12 and let b > 1. Assume
#(p°) = 2 mod 12 and deduce that 5°~1-2 = 1 mod 6. Why is this a contradiction?

(iv) Show similarly that if p is a prime congruent to 7 or 1 mod 12, and
b> 1, then ¢(p®) = 2 mod 12 is impossible.
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5. Define the term primitive root mod m.

(i) Given that g is a primitive root mod m, show that
¢ =¢*mod m <= a=bmod ¢(m).

[You may assume the standard result that, for any c coprime to m, ¢* = 1 mod m <=
ord,,c|k .] Verify that 2 is a primitive root mod 25. Hence or otherwise solve the
congruence

11* = 21 mod 25

and show that the congruence y'? = —1 mod 25 has no solutions.

(ii) Suppose that g is a primitive root mod m, where m > 2, and suppose
that z is such that 22 = 1 mod m. Why is it true that z = ¢* mod m for some
k? (State any general result you use.) Deduce or prove otherwise that

22 =1mod m

has exactly two solutions mod m, and hence that the only solutions are x =
+1 mod m.

6. Define the function o and show that for any prime p and integer a > 1,

+1_
o(p®) = Bt

(i) Let n = 2™"!1(2™ — 1) where 2™ — 1 is prime. Show that o(n) = 2n.
State clearly any properties of ¢ which you use. Use this formula to give three
examples of numbers n for which o(n) = 2n.

(ii) Use the formula for o(p*) to show that

o(p®) <p° (L> :

p—1

Now suppose that n = p?¢® where p > 3 and ¢ > 5 are distinct odd primes and
a>1,b>1. Show that

and deduce that o(n) < 2n.
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7.

(i) Let m be an integer with (m, 10) = 1. Show that the length of the deci-
mal period of % is the order of 10 mod m, and that the period begins immediately
after the decimal point.

(ii) Let p be prime and let n = 6p + 1. Suppose that 2 = —1 mod n. Let
g be a prime factor of n. Show that 2 = 1 mod ¢ and that ord,2 = 2p. Deduce
that 2p|(¢ — 1) and hence that ¢ > /n. Why does it follow that n is prime?

8. For the continued fraction expansion [ag, a1, as,...] of g = y/n where n is
not a square, you may assume the standard formulae:

Py +vn
Qr

(i) Suppose that @, = 1 for some k > 1. Show that P, = ay and @Q; =
n — a3. Show also that Py, 1 = P|, Qz+1 = @1, and the continued fraction recurs:
a0, @1, -

(i) For the case n = d®> +d (d > 1), show that the continued fraction
expansion of y/n is [d, 2, 2d].

(iii) Find three solutions in integers z > 0,y > 0 to the equation

(n— Pk2+1)

PO:O,QOII, T = ,a’k:[xk], Pk+1:aka_Pk, Qk"’l:T'

z? —30y% = 1.
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