Solutions to MATH342 (Number Theory) May 2002 examination

Question 1.

(i) The number of positive multiples of an integer k>0 which are $\leq n$ is clearly $\left\lceil \frac{n}{k} \right\rceil$. To count the power of p dividing n!, since p is prime, it is enough to count the powers of p dividing $1,2,3,\ldots,n$ and add these powers up. Now, the number of multiples of p among $1,2,3,\ldots,n$ is $\left\lceil \frac{n}{p} \right\rceil$. Each multiple of p^2 among $1,2,3,\ldots,n$ gives an additional power of p dividing into n!, giving $\left\lceil \frac{n}{p} \right\rceil + \left\lceil \frac{n}{p^2} \right\rceil$ so far. Continuing in this way we get that the total power of p is as in the given formula.

4 marks. Seen in lectures.

(ii) Let $60! = 2^{a_1} 5^{b_1} c_1$ where c_1 is not a multiple of 2 or 5. Then the power of 10 dividing 60! is clearly the smaller of a_1 and b_1 . Working out a_1 we get $\left[\frac{60}{2}\right] + \left[\frac{60}{4}\right] + \left[\frac{60}{8}\right] + \left[\frac{60}{16}\right] + \left[\frac{60}{32}\right]$, since all subsequent terms are zero. This gives $a_1 = 30 + 15 + 7 + 3 + 1 = 56$. Working out b_1 we get $\left[\frac{60}{5}\right] + \left[\frac{60}{25}\right]$, since all subsequent terms are zero. This gives $b_1 = 12 + 2 = 14$. So, there are $\min(56,14) = 14$ zeros at the end of 60!.

4 marks. Similar to exercise sheet question.

(iii) By definition, $[x] \le x$, $[y] \le y$, $[z] \le z$, giving that [x] + [y] + [z] is an integer $\le x + y + z$; so [x] + [y] + [z] must be \le (the greatest integer $\le x + y + z$); that is to say, $[x] + [y] + [z] \le [x + y + z]$. **2 marks.** Unseen.

(iv) The typical term in the expression (i) for the power of p dividing (a+b+c)! is given by $[(a+b+c)/p^k] = [a/p^k + b/p^k + c/p^k]$, and by (iii) this is $\geq [a/p^k] + [b/p^k] + [c/p^k]$, which is the sum of the corresponding terms in the expression (i) for the power of p dividing a!, b! and c!. This applies to all the terms in the expression so adding them up gives that the power of p dividing (a+b+c)! is \geq the sum of the powers of p dividing a!, b! and c!. It now follows that, for all primes p, the prime-power expressions for (a+b+c)!, a!, b!, c! have the form

$$(a+b+c)! = \dots p^{r_1} \dots, \quad a! = \dots p^{r_2} \dots, \quad b! = \dots p^{r_3} \dots, \quad c! = \dots p^{r_4} \dots,$$

and $r_1 \ge r_2 + r_3 + r_4$, which is the same as the power of p dividing a!b!c!. Hence by prime-power decompositions, a!b!c!|(a+b+c)!.

4 marks. Unseen.

We already know from (ii) that $60! = 2^{a_1}5^{b_1}c_1$, where $a_1 = 56$, $b_1 = 14$ and c_1 is not a multiple of 2 or 5. Let $10! = 2^{a_2}5^{b_2}c_2$ where c_2 is not a multiple of 2 or 5. Working out a_2 we get $\left[\frac{10}{2}\right] + \left[\frac{10}{4}\right] + \left[\frac{10}{8}\right]$, since all subsequent terms are zero. This gives $a_2 = 5 + 2 + 1 = 8$. Working out b_2 we get $\left[\frac{10}{5}\right]$, since all subsequent terms are zero. This gives $b_2 = 2$. Let $20! = 2^{a_3}5^{b_3}c_3$ where c_3 is not a multiple of 2 or 5. Working out a_3 we get $\left[\frac{20}{2}\right] + \left[\frac{20}{4}\right] + \left[\frac{20}{8}\right] + \left[\frac{20}{16}\right]$, since all subsequent terms are zero. This gives $a_3 = 10 + 5 + 2 + 1 = 18$. Working out b_3 we get $\left[\frac{20}{5}\right]$, since all subsequent terms are zero. This gives $b_3 = 4$. Let $30! = 2^{a_4}5^{b_4}c_4$ where c_4 is not a multiple of 2 or 5. Working out a_4 we get $\left[\frac{30}{2}\right] + \left[\frac{30}{4}\right] + \left[\frac{30}{16}\right]$, since all subsequent terms are zero. This gives $a_4 = 15 + 7 + 3 + 1 = 26$. Working out a_4 we get $\left[\frac{30}{5}\right] + \left[\frac{30}{25}\right]$, since all subsequent terms are zero. This gives $a_4 = 15 + 7 + 3 + 1 = 26$. Working out a_4 we get $a_4 = 15 + 7 + 3 + 1 = 26$. Working out a_4 we get $a_4 = 15 + 7 + 3 + 1 = 26$. Working out a_4 we get $a_4 = 15 + 7 + 3 + 1 = 26$. Working out a_4 we get $a_4 = 15 + 7 + 3 + 1 = 26$. This gives $a_4 = 15 + 7 + 3 + 1 = 26$. Working out a_4 we get $a_4 = 15 + 7 + 3 + 1 = 26$. Working out a_4 we get $a_4 = 15 + 7 + 3 + 1 = 26$. This gives $a_4 = 15 + 7 + 3 + 1 = 26$.

Let $\frac{60!}{10!20!30!} = 2^{a_5} 5^{b_5} c_5$ where c_5 is not a multiple of 2 or 5. Then $a_5 = a_1 - a_2 - a_3 - a_4 = 56 - 8 - 18 - 26 = 4$ and $b_5 = b_1 - b_2 - b_3 - b_4 = 14 - 2 - 4 - 7 = 1$. So, there is min(4,1) =1 zero at the end of $\frac{60!}{10!20!30!}$.

6 marks. Similar to exercise sheet question.

Question 2.

- (i) Fermat's Theorem states that:
 - (a) If p is prime and p does not divide a then $a^{p-1} \equiv 1 \pmod{p}$.
 - (b) For any a (whether p divides a or not), we have: $a^p \equiv a \pmod{p}$.

Proof.

(a) Consider $a, 2a, \ldots, (p-1)a$ (*). For any j in the range $1 \le j \le (p-1)$, we have $p \not\mid j$. Since also $p \not\mid a$, it follows that $p \not\mid ja$; that is, none of the numbers in (*) is congruent to $0 \pmod p$. Also, imagine $ia \equiv ja \pmod p$ for $i \ne j$ (say, i < j) and $1 \le i, j \le (p-1)$; then $(i-j)a \equiv 0 \pmod p$ and so $p \mid (i-j)a$; but $p \not\mid (i-j)$, since 0 < i-j < p, and so $p \mid a$, a contradiction. Hence $ia \ne ja$ whenever $i \ne j$, $1 \le i, j \le (p-1)$. It follows that the numbers: $a, 2a, \ldots, (p-1)a$ are all distinct mod p and none are $0 \mod p$. For each of the p-1 numbers $a, 2a, \ldots, (p-1)a$ there are only p-1 possibilities mod p: $1, 2, \ldots, p-1$. It follows that $\{a, 2a, \ldots, (p-1)a\}$ is the same set as $\{1, 2, \ldots, p-1\}$, possibly with a different order. Hence $a \cdot 2a \cdot \ldots \cdot (p-1)a \equiv 1 \cdot 2 \cdot \ldots \cdot (p-1)$; that is: $(p-1)!a^{p-1} \equiv (p-1)! \pmod p$. Clearly ((p-1)!, p) = 1 [since each of $1, \ldots, p-1$ is coprime to p], and so $a^{p-1} \equiv 1 \pmod p$, as required.

(b) If $p \not\mid a$, then we have already shown $a^{p-1} \equiv 1 \pmod{p}$. Multiplying both sides by a gives $a^p \equiv a \pmod{p}$. If $p \mid a$ then $a^p \equiv a \pmod{p}$ is trivially true, since $a^p \equiv 0$ and $a \equiv 0 \pmod{p}$. **5 marks.** Bookwork from lectures.

(ii) We say that m is a pseudoprime to the base b if m is composite and $b^m \equiv b \pmod{m}$. When (b, m) = 1, this is equivalent to: $b^{m-1} \equiv 1 \pmod{m}$.

By Fermat's theorem, $3^{10} \equiv 1 \pmod{11}$, and so $3^{670} \equiv (3^{10})^{67} \equiv 1^{67} \equiv 1 \pmod{11}$. Similarly, by Fermat's theorem, $3^{60} \equiv 1 \pmod{61}$, and so $3^{660} \equiv (3^{60})^{11} \equiv 1^{11} \equiv 1 \pmod{61}$. Therefore, $3^{670} \equiv 3^{660}3^{10} \equiv 3^{10} \equiv (3^5)^2 \equiv 243^2 \equiv (-1)^2 \equiv 1 \pmod{61}$. In summary, we have shown that: $3^{670} \equiv 1 \pmod{11}$ and $3^{670} \equiv 1 \pmod{61}$; since (11, 61) = 1, it follows that $3^{670} \equiv 1 \pmod{(11 \cdot 61 = 671)}$. Since $671 = 11 \cdot 61$ is composite, it follows that 3 is a pseudoprime to base 3.

5 marks. Seen similar on exercise sheet.

(iii) Since n is a pseudoprime to base b, we have $b^n = b \pmod{n}$. Squaring both sides give: $(b^n)^2 = b^2 \pmod{n}$, which is the same as: $(b^2)^n = b^2 \pmod{n}$, so that n is also a pseudoprime to base b^2 .

2 marks. Unseen.

(iv) We have: $4^2 = 16 \equiv 1 \pmod{15}$, so that: $4^{14} \equiv (4^2)^7 \equiv 1^7 \equiv 1 \pmod{15}$; since also $15 = 3 \cdot 5$ is composite, this gives that 15 is a pseudoprime to base 4. However, $2^4 = 16 \equiv 1 \pmod{15}$, so that: $2^{14} \equiv (2^4)^3 \cdot 2^2 \equiv 1^4 \cdot 4 \equiv 4 \not\equiv 1 \pmod{15}$, which means that 15 is not a pseudoprime to base 2.

2 marks. Seen similar on exercise sheet.

For $n=b^2-1$ and base b^2 , for odd $b\geq 3$, first note that n=(b+1)(b-1), with both factors ≥ 2 , so that n is composite. Also, $b^2=(b^2-1)+1=n+1\equiv 1\pmod n$, so that: $(b^2)^{n-1}\equiv 1^{n-1}\equiv 1\pmod n$, so that n is a pseudoprime to base b^2 . For base b, note that n-1 is odd, say that n=2k+1, giving: $b^{n-1}\equiv b^{2k+1}\equiv (b^2)^k\cdot b\equiv 1^k\cdot b\equiv b\not\equiv 1\pmod n$ [since $1< b< b^2-1=n$], so that n is not a pseudoprime to base b.

6 marks. Unseen.

Question 3.

- (i) Miller's test on n to base b (where n be an odd positive integer and b coprime to n). We use
- $\langle x \rangle$ to denote the least positive residue of x mod n.
 - Step 1. Let k = n 1, $\langle b^k \rangle = r$. If r = 1 then continue, otherwise n fails the test.

While k is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of $\langle b^k \rangle$.

When k fails to be even or r fails to be 1:

If r = 1 or n - 1 then n passes the test.

If $r \neq 1$ and $r \neq n-1$ then n fails the test.

6 marks. From lectures.

First compute: $7^2 \equiv 49 \equiv 24$, $7^4 \equiv (7^2)^2 \equiv 24^2 \equiv 576 \equiv 1 \pmod{25}$. This gives, $7^{25-1} \equiv 7^{24} \equiv (7^4)^6 \equiv 1^6 \equiv 1$; the exponent 24 is even, so we continue to compute $7^{12} \equiv (7^4)^3 \equiv 1$; the exponent 12 is still even, so we continue to compute $7^6 \equiv 7^4 \cdot 7^2 \equiv 1 \cdot 49 \equiv 25 - 1$, and so we stop, with 25 passing Miller's test to base 7.

First compute: $5^2 \equiv 25$, $5^4 \equiv 625 \equiv 191$, $5^6 \equiv 5^2 \cdot 5^4 \equiv 25 \cdot 191 \equiv 4775 \equiv 1 \pmod{217}$. So, $5^{216} \equiv (5^6)^{36} \equiv 1^{36} \equiv 1$; the exponent 216 is even so we continue to compute $5^{108} \equiv (5^6)^{18} \equiv 1^{18} \equiv 1$; the exponent 108 is even so we continue to compute $5^{54} \equiv (5^6)^9 \equiv 1^9 \equiv 1$; the exponent 54 is even so we continue to compute $5^{27} \equiv (5^6)^4 \cdot 5^3 \equiv 1^4 \cdot 125 \equiv 125$, which is neither 1 nor 217 – 1 (mod 217). So, 217 fails Miller's test to base 5.

8 marks. Seen similar on exercise sheet.

(ii) Given that $b^{n-1} \equiv 1 \pmod{n}$, we see that n passes Step 1 of Miller's Test to base b. Since n-1 is even, we proceed to Step 2; since $b^{(n-1)/2} \not\equiv \pm 1 \pmod{n}$, it fails Miller's Test.

Let $c=(b^{(n-1)/2}-1,n)$; then by definition, $c|b^{(n-1)/2}-1$ and c|n, so that c is a factor of n. Imagine c=n; then we would have $n|b^{(n-1)/2}-1$, that is: $b^{(n-1)/2}\equiv 1\pmod n$, contradicting the given information that $b^{(n-1)/2}\not\equiv\pm 1\pmod n$. Imagine c=1; then we would have $(b^{(n-1)/2}-1,n)=1$; combining this with the given information that $b^{n-1}\equiv 1\pmod n$ gives that $n|b^{n-1}-1=(b^{(n-1)/2}+1)(b^{(n-1)/2}-1)$, so we would have $n|b^{(n-1)/2}+1$, that is: $b^{(n-1)/2}\equiv-1\pmod n$, which would again contradict $b^{(n-1)/2}\not\equiv\pm 1\pmod n$. Hence, c|n, but $c\not=1,n$, as required.

6 marks. Unseen.

Question 4. All congruences are mod m in what follows. Clearly

$$r_1 \equiv 1, \quad r_2 \equiv 10r_1 \equiv 10, \quad r_3 \equiv 10r_2 \equiv 10^2, \quad \text{etc.},$$

and generally $r_{j+1} \equiv 10^j$. It is also clear that the calculation of the decimal places q_i repeats when one of the remainders r_j becomes equal to a previous remainder r_i . I claim that when this happens, i=1. Proof: If i>1 and $r_{i+k}=r_i$ ($k\geq 1$) is the first repeat then $10r_{(i+k)-1}\equiv r_{i+k}=r_i\equiv 10r_{i-1}$ and 10 can be cancelled since $2\not\mid m$ and $5\not\mid m$, so that $r_{i-1+k}\equiv r_{i-1}$ and consequently these remainders are equal since both are between 1 and m-1. But this contradicts the assumption that $r_{i+k}=r_i$ is the first repeat.

Thus recurrence starts with $r_{k+1}=r_1=1$, i.e. $q_1=q_{k+1},q_2=q_{k+2}$ and so on. Thus k is the smallest number such that $10^k\equiv 1$, i.e. the order of 10 mod m is k, which is the length of the period.

9 marks.

Now suppose p is prime, $p \neq 2, p \neq 5$. When the length of the period is 2k we have $r_{2k+1} \equiv 10^{2k} \equiv 1$ so that $(10^k)^2 \equiv 1$ and since the modulus is prime, this implies $10^k \equiv \pm 1$. But it cannot be 1 since the period is 2k not k so $r_{k+1} \equiv -1$, which in view of $0 < r_i < p$ implies $r_{k+1} = p - 1$.

4 marks.

 $r_2 \equiv 10, r_{k+2} \equiv 10^{k+1} = 10^k \cdot 10 \equiv -10 \equiv -r_2, \quad r_{k+3} \equiv 10^{k+1} = 10^k \cdot 10^2 \equiv -10^2 \equiv -r_3,$ etc., i.e. $r_{k+j} + r_j \equiv 0, \ j = 1, 2, \ldots$, but both these are strictly between 0 and p so they must add up to p.

Finally, note that, since $10r_i = pq_i + r_{i+1}$ and $10r_{i+k} = pq_{i+k} + r_{i+k+1}$, we can add these two equations to give: $10(r_i + r_{i+k}) = p(q_i + q_{i+k}) + (r_{i+1} + r_{i+k+1})$, so that $10p = p(q_i + q_{i+k}) + p$ (from the previous result), so that $q_i + q_{i+k} = 9$, as required.

7 marks. All bookwork from lectures.

Question 5. $\sigma(n) = \text{the sum of the divisors of } n \text{ which are } \geq 1.$ p^a has divisors $1, p, p^2, \dots p^{a-1}, p^a$ so $\sigma(p^a) = 1 + p + p^2 + \dots p^a = (p^{a+1} - 1)/(p-1).$ Writing $n = p_1^{n_1} \dots p_k^{n_k}$, we have: $\sigma(n) = \frac{p_1^{n_1+1}-1}{p_1-1} \dots \frac{p_k^{n_k+1}-1}{p_k-1}.$ **3 marks.** From lectures.

(i) Here is a table of values of $\sigma(p^a)$ for small p and a. Since all rows and columns are strictly increasing, any further entries would be greater than 42 and so are irrelevant.

$a\downarrow p \rightarrow$	2	3	5	7	11	13	17	19	23	29	31	37	41	
1	3	4	6	8	12	14	18	20	24	30	32	38	42	
2	7	13	31	57										
3	15	40	156											
4														
5	63													

Now the following give all the ways of writing 42 as a product of entries in different columns of the table: $7 \cdot 6$ or $3 \cdot 14$ or 42. These give

 $n=2^2\cdot 5^1, \ 2^1\cdot 13^1, \ 41^1$, that is: n=20, 26, 41 are the only solutions to $\sigma(n)=42$. For the case $\sigma(n)=21$, note that 21 does not occur as an entry anywhere in the table; 7 and 3 each occur exactly once, but in the same column; therefore it is not possible to write 21 as a product of entries in different columns of the table, and so there does not exist n such that $\sigma(n)=21$.

9 marks. Seen similar on exercise sheet.

(ii) We have

$$\sigma(p^a) = \frac{p^{a+1} - 1}{p-1} < \frac{p^{a+1}}{p-1} = p^a \left(\frac{p}{p-1}\right).$$

Also

$$\frac{p}{p-1} = 1 + \frac{1}{p-1},$$

so if $p \geq p_0$ then we have

$$\frac{p}{p-1} = 1 + \frac{1}{p-1} \le 1 + \frac{1}{p_0 - 1} = \frac{p_0}{p_0 - 1}.$$

Applying this to $p_0 = 3$ and 5 we get that

$$p \ge 3 \Longrightarrow \frac{\sigma(p^a)}{p^a} < \frac{p}{p-1} \le \frac{3}{2}, \qquad q \ge 5 \Longrightarrow \frac{\sigma(q^b)}{q^b} < \frac{q}{q-1} \le \frac{5}{4}.$$

As p and q are distinct primes, $(p^a, q^b) = 1$, and so:

$$\frac{\sigma(n)}{n} = \frac{\sigma(p^a)\sigma(q^b)}{p^a q^b} < \frac{3}{2} \times \frac{5}{4} = \frac{15}{8} < 2,$$

as required.

8 marks. Seen similar on exercise sheet.

Question 6.

(i) 'g is a primitive root mod n' means that the order of g mod n is $\phi(n)$, i.e. the smallest k > 0 for which $g^k \equiv 1 \mod n$ is $k = \phi(n)$.

2 marks. From lectures.

(ii) Let n=ab where a>2, b>2 and (a,b)=1. Let (g,n)=1; that is: (g,ab)=1. First show that $\phi(a)$ is even. Proof: Since a>2, we must have either $a=2^k, k\geq 2$ or a has an odd prime factor. If $a=2^k, k\geq 2$, we have $\phi(a)=2^{k-1}$ which is even. If a has an odd prime factor p, then the formula for $\phi(a)$ has an even factor p-1. In either case, $\phi(a)$ is even. Similarly, $\phi(b)$ is even. Now note the standard result that $(g,ab)=1\Rightarrow (g,a)=1$, and so $g^{\phi(a)}\equiv 1 \mod a$, by Euler's Theorem. Hence

$$g^{\phi(a)\phi(b)/2} = (g^{\phi(a)})^{\phi(b)/2} \equiv 1^{\phi(b)/2} \mod a,$$

Note that here we use the fact that $\phi(b)$ is even, so that the power on the right is an integer. Similarly by interchanging a and b we get

$$g^{\phi(a)\phi(b)/2} = \left(g^{\phi(b)}\right)^{\phi(a)/2} \equiv 1^{\phi(a)/2} \mod b,$$

using the fact that $\phi(a)$ is even. Hence $g^{\phi(a)\phi(b)/2} \equiv 1 \mod a$ and mod b, and hence mod ab=n since (a,b)=1 (Standard result: if the same congruence holds mod a and mod b then it holds mod $\operatorname{lcm}(a,b)$, which here is ab since (a,b)=1.) Using (a,b)=1 again, and the general fact that this implies $\phi(a)\phi(b)=\phi(n)$, we find $g^{\phi(n)/2}\equiv 1 \mod n$. It follows that every g has order at most $\phi(n)/2 \mod n$, and so there does not exist g of order $\phi(n)$; that is, there does not exist a primitive root mod n.

8 marks. Bookwork from lectures.

(iii) Working out powers of 5 mod 34 gives

	k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
$5^k \mod$	34	5	25	23	13	31	19	27	33	29	9	11	21	3	15	7	1	

This verifies that $\operatorname{ord}_{34} 5 = 16 = \phi(34)$ and so 5 is a primitive root mod 34.

3 marks. Seen similar in exercises.

(a) From table, $23 \equiv 5^3$, $15 \equiv 5^{14} \pmod{34}$ so given equation $23^x \equiv 15 \pmod{34}$ becomes

$$5^{3x} \equiv 5^{14} \pmod{34} \iff 3x \equiv 14 \pmod{16}$$

by the general results that, for a primitive root $g \mod n$: $g^a \equiv g^b \pmod n \Leftrightarrow a \equiv b \pmod {\phi(n)}$. This gives $11 \cdot 3x \equiv 11 \cdot 14$, that is: $x \equiv 10 \mod 16$.

3 marks. Seen similar in exercises.

(b) Note that $y^4 \equiv 21 \pmod{34}$ implies that (y, 34) = 1 since any common factor would also have to divide the r.h.s. 21 of the congruence, and so would be a common factor of 34, 21, which are coprime. Hence $y \equiv 5^x \pmod{34}$ for some x (since 5 is a primitive root). Also $5^{12} \equiv 21$ from the table. The given congruence turns into

$$5^{4x} \equiv 5^{12} \pmod{34} \iff 4x \equiv 12 \pmod{16}.$$

by the same general result used in part (a). This gives $x \equiv 3 \mod 4$, i.e. $x \equiv 3, 7, 11, 15 \pmod{16}$ which, from the table, gives: $y \equiv 23, 27, 11, 7 \mod 34$.

4 marks. Seen similar in exercises.

Question 7.

(i) First, note $P_1 = a_0 Q_0 - P_0 = a_0 \cdot 1 - 0 = a_0 = [\sqrt{n}]$ and $Q_1 = (n - P_1^2)/Q_0 = (n - a_0^2)/1 = n - a_0^2$.

Suppose $Q_k = 1$ for some $k \ge 1$. Then $x_k = P_k + \sqrt{n}$ so $a_k = [x_k] = P_k + [\sqrt{n}] = P_k + a_0$. That is, $a_k - P_k = a_0$. Hence,

 $P_{k+1} = a_k Q_k - P_k = a_k - P_k = a_0 = P_1 \text{ and } Q_{k+1} = (n - P_{k+1}^2)/Q_k = (n - a_0^2)/1 = Q_1.$ Furthermore, $x_{k+1} = (P_{k+1} + \sqrt{n})/Q_{k+1} = (P_1 + \sqrt{n})/Q_1 = x_1$ and so $a_{k+1} = [x_{k+1}] = [x_1] = a_1$. This means that rows P_1, Q_1, x_1, a_1 and $P_{k+1}, Q_{k+1}, x_{k+1}, a_{k+1}$ are identical and so clearly $a_{k+1} = a_1, a_{k+2} = a_2, \ldots$ So the continued fraction is $[a_0, \overline{a_1, \ldots, a_k}]$.

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k	P_k	Q_k	x_k	a_k
0	0	1	\sqrt{n}	\overline{d}
1	d	2d	$\frac{d+\sqrt{n}}{2d}$	1
2	d	1	$d + \sqrt[n]{n}$	2d

Justification of a_0, a_1, a_2 as follows.

 $a_0 = [\sqrt{n}]$. But, for all $d \ge 1$, $d^2 < d^2 + 2d < d^2 + 2d + 1$ and so $d < \sqrt{d^2 + 2d} < d + 1$, so that $[\sqrt{n}] = d$, i.e. $a_0 = d$.

$$a_1 = \left[\frac{d+\sqrt{n}}{2d}\right] = \left[\frac{d+\left[\sqrt{n}\right]}{2d}\right] = \left[\frac{d+d}{2d}\right] = [1] = 1.$$

$$a_2 = \left[d+\sqrt{n}\right] = \left[d+\left[\sqrt{n}\right]\right] = \left[d+d\right] = \left[2d\right] = 2d.$$

The fact that $Q_2 = 1$ signals recurrence, so that $\sqrt{n} = [d, \overline{1, 2d}]$, as required.

8 marks. Seen similar on exercise sheet.

(iii) d = 5 gives n = 35 i.e. $\sqrt{35} = [5, \overline{1, 10}]$.

Using initial values $p_0 = a_0, q_0 = 1, p_1 = a_0 a_1 + 1, q_1 = a_1$ together with the standard recurrence relations: $p_{k+1} = a_{k+1} p_k + p_{k-1}$ and $q_{k+1} = a_{k+1} q_k + q_{k-1}$ for convergents p/q of \sqrt{n} , and the identity $p_k^2 - n q_k^2 = (-1)^{k+1} Q_{k+1}$, we get

$_{-}k$	a_k	p_k	q_k
0	5	5	1
1	1	6	1
2	10	65	11
3	1	71	12
4	10	775	131
5	1	846	143

This gives three solutions: x = 6, y = 1 and x = 71, y = 12 and x = 846, y = 143.

6 marks. Seen similar on exercise sheet.

Question 8.

(i) Euler's Criterion: Let p be an odd prime not dividing n. Then $(\frac{n}{n}) \equiv n^{(p-1)/2} \pmod{p}$.

2 marks. Statement of result from lectures.

(ii) By (i), $(\frac{-1}{p}) \equiv (-1)^{(p-1)/2} \equiv 1 \pmod{p} \iff 2|(p-1)/2 \iff 4|(p-1) \iff p \equiv 1 \pmod{4}$. **4 marks.** Bookwork from lectures.

(iii) Gauss' Law of Quadratic Reciprocity: Let p, q be two odd primes. If $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$ then $(\frac{p}{q}) = (\frac{q}{p})$. If $p \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$ then $(\frac{p}{q}) = -(\frac{q}{p})$.

2 marks. Statement of result from lectures.

Applying this result, we see $(\frac{5}{p}) = (\frac{p}{5})$ for any odd prime p, since $5 \equiv 1 \pmod{4}$. Furthermore, $0^2 \equiv 0, 1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv 4, 4^2 \equiv 1 \pmod{5}$, so that the quadratic residues mod 5 are: 0, 1, 4, that is: $0, 1, -1 \pmod{5}$. We can discount $p \equiv 0 \pmod{5}$, since then p = 5 and $(\frac{p}{5}) = 0$. Hence the values of p for which the legendre symbol equals 1 are precisely $p \equiv \pm 1 \pmod{5}$.

4 marks. Unseen.

(iv) Let p_1, p_2, \ldots, p_k be primes, all congruent to $-1 \pmod{5}$. Let $n = 4(p_1p_2 \ldots p_k)^2 - 5$. Note that $p_1p_2 \ldots p_k \equiv (-1)^k \equiv \pm 1 \pmod{5}$, so that $n = 4(p_1p_2 \ldots p_k)^2 - 5 \equiv 4(\pm 1)^2 - 5 \equiv 4 = -1 \pmod{5}$. Now, let p be prime and p|n. Then $p|4(p_1p_2 \ldots p_k)^2 - 5$ and so $(2p_1p_2 \ldots p_k)^2 \equiv 5 \pmod{p}$, giving that $(\frac{5}{p}) = 1$. Hence $p \equiv \pm 1 \pmod{5}$ [by part (iii)]. Finally, note that it is impossible for all prime factors of n to be congruent to $1 \pmod{5}$ [since the product of numbers congruent to $1 \pmod{5}$ is congruent to $1 \pmod{5}$, whereas $n \equiv -1 \pmod{5}$]; hence at least one prime p dividing $p \equiv -1 \pmod{5}$ [note that $p \equiv 1 \pmod{5}$]. Thus $p \equiv 1 \pmod{5}$ is a new prime, distinct from p_1, p_2, \ldots, p_k , satisfying $p \equiv -1 \pmod{5}$ [note that $p \equiv 1 \pmod{5}$], implying $p \equiv 1 \pmod{5}$, a contradiction, since $p \equiv 1 \pmod{5}$ and so $p \neq 1 \pmod{5}$. Imagine there were only finitely many primes congruent to $p \equiv 1 \pmod{5}$, and that $p \equiv 1 \pmod{5}$ is all of them; the above argument shows the existence of a new such prime $p \equiv 1 \pmod{5}$, a contradiction; hence there are infinitely many such primes, as required.