Solutions to MATH342 (Number Theory) May 2002 examination

Question 1.

(i) The number of positive multiples of an integer k£ > 0 which are < n is clearly [%]. To count
the power of p dividing n!, since p is prime, it is enough to count the powers of p dividing
1,2,3,...,n and add these powers up. Now, the number of multiples of p among 1,2,3,....,n
is [%] Each multiple of p? among 1,2, 3,...,n gives an additional power of p dividing into n!,

giving [%] + [fg] so far. Continuing in this way we get that the total power of p is as in the
given formula.
4 marks. Seen in lectures.

(ii) Let 60! = 2%15% ¢; where c; is not a multiple of 2 or 5. Then the power of 10 dividing 60! is
clearly the smaller of a1 and b;. Working out a1 we get [62—0} + [(2—0] + [%—0] + [%] + [g—g] , since
all subsequent terms are zero. This gives a; = 304+ 15+ 7+ 3 + 1 = 56. Working out b; we
get [%] + [%], since all subsequent terms are zero. This gives by = 12 4+ 2 = 14. So, there are

min(56,14) = 14 zeros at the end of 60!.
4 marks. Similar to exercise sheet question.

(iii) By definition, [z] < z,[y] < vy, [2] < 2, giving that [z] + [y| + [z] is an integer < z +y + 2; so
[z]+[y] + [2] must be < (the greatest integer < z+y+2); that is to say, [z]+ [y]+[z] < [z +y+2z].
2 marks. Unseen.

(iv) The typical term in the expression (i) for the power of p dividing (a + b + ¢)! is given by
[(@a+ b+ c)/p*] = [a/p* + b/p* + ¢/p¥], and by (iii) this is > [a/p*] + [b/p*] + [¢/p*], which is
the sum of the corresponding terms in the expression (i) for the power of p dividing a!, b! and
c!. This applies to all the terms in the expression so adding them up gives that the power of p
dividing (a + b+ c)! is > the sum of the powers of p dividing a!, b! and ¢!. It now follows that,
for all primes p, the prime-power expressions for (a + b+ ¢)!, a!, b, ¢! have the form

(a+b+c)l=...p"..., al=...p"2..., b=...p%. ., d=...p"...,

and rq > ro + 13+ 74, which is the same as the power of p dividing a!blc!. Hence by prime-power
decompositions, a!blc!|(a + b+ c)!.
4 marks. Unseen.

We already know from (ii) that 60! = 2%5%¢;, where a; = 56,b; = 14 and ¢; is not a
multiple of 2 or 5. Let 10! = 2225%2¢, where ¢y is not a multiple of 2 or 5. Working out ay we get
[&] + [m] + [m], since all subsequent terms are zero. This gives ao =5+ 2+ 1 = 8. Working
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out by we get [%], since all subsequent terms are zero. This gives by = 2. Let 20! = 203503 ¢

where c3 is not a multiple of 2 or 5. Working out as we get [22—0] + [%] + [%] + [%], since all
subsequent terms are zero. This gives ag = 10+ 54 2+ 1 = 18. Working out b3 we get [%],
since all subsequent terms are zero. This gives b3 = 4. Let 30! = 2%5%¢, where ¢, is not a
multiple of 2 or 5. Working out a4 we get [3’2—0] + [34—0] + [%] + [%], since all subsequent terms

are zero. This gives ay = 15+ 74+ 3+ 1 = 26. Working out by we get [35—0] + [%], since all
subsequent terms are zero. This gives by =6+ 1 =71.

Let % = 295555 ¢ where ¢ is not a multiple of 2 or 5. Then a5 = a1 —as —az — a4 =
56 —8 — 18 —26 =4 and b5 = by — by — b3 — by =14 —2—4 — 7 = 1. So, there is min(4,1) =1

60!
zero at the end of 10201301 -

6 marks. Similar to exercise sheet question.



Question 2.
(i) Fermat’s Theorem states that:
(a) If p is prime and p does not divide a then a?~! = 1 (mod p).
(b) For any a (whether p divides a or not), we have: a? = a (mod p).

Proof.

(a) Consider a,2a,...,(p—1)a (*). For any j in the range 1 < j < (p—1), we have p/ j. Since
also p [/ a, it follows that p } ja; that is, none of the numbers in (*) is congruent to 0 (mod p). Also,
imagine ia = ja (mod p) for i # j (say, 1 < j) and 1 < 4,5 < (p — 1); then (i — j)a = 0 (mod p)
and sop | (i —j)a; but pJ (i —j), since 0 < i —j < p, and so pla, a contradiction. Hence ia Z ja
whenever i # j, 1 <14,j < (p—1). It follows that the numbers: a,2a,...,(p—1)a are all distinct

mod p and none are 0 mod p. For each of the p — 1 numbers a,2a,...,(p — 1)a there are only
p — 1 possibilities mod p: 1,2,...,p — 1. It follows that {a,2a,...,(p — 1)a} is the same set as
{1,2,...,p — 1}, possibly with a different order. Hence a-2a-...-(p—1)a=1-2-...-(p—1);

that is: (p — 1)!a?~! = (p — 1)! (mod p). Clearly ((p — 1)!,p) = 1 [since each of 1,...,p — 1 is
coprime to p], and so a? ! =1 (mod p), as required.

(b) If p} a, then we have already shown a?~! = 1 (mod p). Multiplying both sides by a gives
aP = a (mod p). If p | a then a? = a (mod p) is trivially true, since a? = 0 and a = 0 (mod p).
5 marks. Bookwork from lectures.

(ii) We say that m is a pseudoprime to the base b if m is composite and b™ = b (mod m). When
(b,mm) = 1, this is equivalent to: ¥™ ' =1 (mod m).

By Fermat’s theorem, 3! = 1 (mod 11), and so 3570 = (310)67 = 157 = 1 (mod 11).
Similarly, by Fermat’s theorem, 3% = 1 (mod 61), and so 3%0 = (3%0)!1 = 11 = 1 (mod 61).
Therefore, 3670 = 3660310 = 310 = (35)2 = 2432 = (—1)2 = 1 (mod 61). In summary, we have
shown that: 3% = 1 (mod 11) and 35° = 1 (mod 61); since (11,61) = 1, it follows that
3670 =1 (mod (11-61 = 671). Since 671 = 11-61 is composite, it follows that 3 is a pseudoprime
to base 3.

5 marks. Seen similar on ezercise sheet.

(iii) Since n is a pseudoprime to base b, we have b™ = b (mod n). Squaring both sides give:
(0™)? = b? (mod n), which is the same as: (b>)" = b? (mod n), so that n is also a pseudoprime
to base b?.

2 marks. Unseen.

(iv) We have: 42 = 16 = 1 (mod 15), so that: 44 = (42)" = 17 = 1 (mod 15); since also 15 = 3-5
is composite, this gives that 15 is a pseudoprime to base 4. However, 2* = 16 = 1 (mod 15), so
that: 2! = (24)3.22 =1%.4 =4 # 1 (mod 15), which means that 15 is not a pseudoprime to
base 2.

2 marks. Seen similar on exercise sheet.

For n = b®> — 1 and base b%, for odd b > 3, first note that n = (b + 1)(b — 1), with both
factors > 2, so that n is composite. Also, b> = (b2 — 1)+ 1 =n+1 =1 (mod n), so that:
(b*)"~1 =171 =1 (mod n), so that n is a pseudoprime to base b?. For base b, note that n — 1
is odd, say that n = 2k + 1, giving: "~ = p%+1 = (%) .b=1F. b =b # 1 (mod n) [since
1 <b<b®—1=n],so that n is not a pseudoprime to base b.

6 marks. Unseen.



Question 3.
(i) Miller’s test on n to base b (where n be an odd positive integer and b coprime to n). We use
(z) to denote the least positive residue of  mod n.

Step 1. Let k =n — 1, (b¥) = r. If r = 1 then continue, otherwise n fails the test.

While £ is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of (b*).

When £ fails to be even or r fails to be 1:

If r =1 or n— 1 then n passes the test.

If r #1 and r # n — 1 then n fails the test.

6 marks. From lectures.

First compute: 72 = 49 = 24, 7 = (7?)2 = 24? = 576 = 1 (mod 25). This gives, 727! =
7?* = (7%)% = 15 = 1; the exponent 24 is even, so we continue to compute 72 = (74)% = 1; the
exponent 12 is still even, so we continue to compute 76 = 7*.72 = 1.49 = 25 — 1, and so we
stop, with 25 passing Miller’s test to base 7.

First compute: 52 = 25, 5* = 625 = 191, 5% = 52 . 5* = 25191 = 4775 = 1 (mod 217).
So, 5216 = (56)36 = 136 = 1; the exponent 216 is even so we continue to compute 5108 =
(5%)18 = 118 = 1; the exponent 108 is even so we continue to compute 5% = (56)% = 19 = 1; the
exponent 54 is even so we continue to compute 527 = (56)* .53 = 1*.125 = 125, which is neither
1 nor 217 — 1 (mod 217). So, 217 fails Miller’s test to base 5.

8 marks. Seen similar on exercise sheet.

(ii) Given that b"~! =1 (mod n), we see that n passes Step 1 of Miller’s Test to base b. Since
n — 1 is even, we proceed to Step 2; since 5" 1/2 £ +1 (mod n), it fails Miller’s Test.

Let ¢ = (b(®~1/2 — 1,n); then by definition, ¢/b®~1/2 — 1 and ¢|n, so that ¢ is a factor
of n. Tmagine ¢ = n; then we would have n|b("~1)/2 — 1, that is: b™~1/2 = 1 (mod n),
contradicting the given information that b®~1/2 £ 41 (mod n). Imagine ¢ = 1; then we would
have (b(®~D/2 — 1,n) = 1; combining this with the given information that "~ = 1 (mod n)
gives that n|b"~! —1 = (6™=/2 £ 1)(™=1/2 — 1), so we would have n|b™~1/2 4+ 1, that is:
b(»=1D/2 = _1 (mod n), which would again contradict b™1)/2 # 41 (mod n). Hence, ¢|n, but
¢ # 1,n, as required.
6 marks. Unseen.

Question 4. All congruences are mod m in what follows. Clearly
=1, ro=10r; =10, r3 = 10ry =102, etc.,

and generally r;,1 = 107. Tt is also clear that the calculation of the decimal places ¢; repeats
when one of the remainders r; becomes equal to a previous remainder 7;. I claim that when
this happens, i = 1. Proof: If i > 1 and 7344 = r; (k > 1) is the first repeat then 107(;;4)—1 =
Tivk = T3 = 10r;_1 and 10 can be cancelled since 2/ m and 5/ m, so that r;_14, = 7—1 and
consequently these remainders are equal since both are between 1 and m—1. But this contradicts
the assumption that r;,; = r; is the first repeat.

Thus recurrence starts with rp11 =r1 =1, i.e. ¢1 = gr+1,92 = qr+2 and so on. Thus k is
the smallest number such that 10¥ = 1, i.e. the order of 10 mod m is k, which is the length of
the period.

9 marks.

Now suppose p is prime, p # 2,p # 5. When the length of the period is 2k we have

ror+1 = 10%¢ = 1 so that (10¥)? = 1 and since the modulus is prime, this implies 10¥ = +1. But

it cannot be 1 since the period is 2k not k so rx+1 = —1, which in view of 0 < r; < p implies
Th+1 =p — L.
4 marks.



1o = 10,7540 = 10k =108 - 10 = —10 = —7r9, 71443 = 10T = 10F - 102 = —102 = —1r3,
etc., i.e. rpy;+71; =0, j =1,2,..., but both these are strictly between 0 and p so they must
add up to p.

Finally, note that, since 107; = pg; + ri4+1 and 1074, = pgi+k + Ti+k+1, We can add these two
equations to give: 10(r; + ritx) = p(gi + ivk) + (rit1 + Tigr+1), so that 10p = p(gi + give) +p
(from the previous result), so that g; + g;+x = 9, as required.

7 marks. All bookwork from lectures.

Question 5. o(n) = the sum of the divisors of n which are > 1.

pa has divisors 1’p’p2’ . .pafl’pa SO U(pa) =1 —|—p+p2 + .. .pa = (pa+1 - 1)/(p - 1)'
ni+l_ nptl_
Writing n = pi" ... pp*, we have: o(n) = plpl—l - pkprl -

3 marks. From lectures.

(i) Here is a table of values of o(p®) for small p and a. Since all rows and columns are strictly
increasing, any further entries would be greater than 42 and so are irrelevant.

al p—| 2 3 5 7 11 13 17 19 23 29 31 37 41
1 3 4 6 8 12 14 18 20 24 30 32 38 42
2 7 13 31 57
3 15 40 156
4 31 121
5 63

Now the following give all the ways of writing 42 as a product of entries in different columns
of the table: 7-6 or 3 - 14 or 42. These give
n=22-5',21.13%, 41!, that is: n = 20, 26,41 are the only solutions to o(n) = 42. For the case
o(n) = 21, note that 21 does not occur as an entry anywhere in the table; 7 and 3 each occur
exactly once, but in the same column; therefore it is not possible to write 21 as a product of
entries in different columuns of the table, and so there does not exist n such that o(n) = 21.
9 marks. Seen similar on ezercise sheet.
(ii) We have

o(p®) = o1 —Pa< . >
p—1 p—1 p—1
Also 1
L:1+_,
p—1 -1

so if p > po then we have

P 1 Po
=1+ <1+ - .
p—1 p—17 " po—1 po—1
Applying this to pg = 3 and 5 we get that
a b 5
pr3= 0 P 3y ) a5
P T p—172 ¢ qg-174
As p and ¢ are distinct primes, (p?, ¢®) = 1, and so:
a b
o(n) _a(p*)a(q’) <§X§_E<2,
n peqb 2 4 8

as required.
8 marks. Seen similar on exercise sheet.



Question 6.

(i) ‘g is a primitive root mod n’ means that the order of g mod n is ¢(n), i.e. the smallest & > 0
for which g¥ =1 mod n is k = ¢(n).

2 marks. From lectures.

(ii) Let n = ab where @ > 2,b > 2 and (a,b) = 1. Let (g,n) = 1; that is: (g,ab) = 1. First show
that ¢(a) is even. Proof: Since a > 2, we must have either a = 2%,k > 2 or a has an odd prime
factor. If a = 2%,k > 2, we have ¢(a) = 2¥~! which is even. If a has an odd prime factor p,
then the formula for ¢(a) has an even factor p — 1. In either case, ¢(a) is even. Similarly, ¢(b)
is even. Now note the standard result that (g, ab) = 1 = (g,a) = 1, and so ¢%(® =1 mod a, by
Euler’s Theorem. Hence

golare2 _ ( ¢(a))"’(”)/ 2 = 190)/2 mod g,

g
Note that here we use the fact that ¢(b) is even, so that the power on the right is an integer.
Similarly by interchanging a and b we get

g#@H0/2 — (o) = 1612 moq o,

using the fact that ¢(a) is even. Hence g?(@¢(%)/2 = 1 mod a and mod b, and hence mod ab = n
since (a,b) = 1 (Standard result: if the same congruence holds mod a and mod b then it holds
mod lem(a, b), which here is ab since (a,b) = 1.) Using (a,b) = 1 again, and the general fact
that this implies ¢(a)p(b) = $(n), we find g#(™/2 = 1 mod n. It follows that every ¢ has order
at most ¢(n)/2 mod n, and so there does not exist g of order ¢(n); that is, there does not exist
a primitive root mod n.

8 marks. Bookwork from lectures.

(iii) Working out powers of 5 mod 34 gives

k|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5*mod34 |5 25 23 13 31 19 27 33 29 9 11 21 3 15 7 1

This verifies that ordss5 = 16 = ¢(34) and so 5 is a primitive root mod 34.
3 marks. Seen similar in ezercises.
(a) From table, 23 = 53,15 = 5'* (mod 34) so given equation 23% = 15 (mod 34) becomes

532 = 5! (mod 34) < 3z = 14 (mod 16)

by the general results that, for a primitive root g mod n: g% = ¢g° (mod n) < a = b (mod $(n)).
This gives 11 - 3z = 11 - 14, that is: £ = 10 mod 16.
3 marks. Seen similar in ezercises.

(b) Note that y* = 21 (mod 34) implies that (y,34) = 1 since any common factor would also
have to divide the r.h.s. 21 of the congruence, and so would be a common factor of 34,21, which
are coprime. Hence y = 5% (mod 34) for some z (since 5 is a primitive root). Also 52 = 21
from the table. The given congruence turns into

5* = 5!2 (mod 34) < 4z = 12 (mod 16).

by the same general result used in part (a). This gives z = 3 mod 4, i.e. x = 3,7,11,15 (mod 16)
which, from the table, gives: y = 23,27,11,7 mod 34.
4 marks. Seen similar in evercises.



Question 7.
(i) First, note Py = agQo — Py =ap-1—0=ap = [\/ﬁ]
and Q1 = (n — P?)/Qo = (n—ad)/1 =n —dd.

Suppose @ = 1 for some k > 1. Then zy = Py + +/n so ax, = [zx] = P + [v/n] = Px + ao.
That is, a — P, = ag. Hence,

Piy1 = apQr — Py = ar — Py = ap = P and Q41 = (n — P2,,)/Qx = (n — a3)/1 = Q1.
Furthermore, Tyl = (Pk:—i—l + \/ﬁ)/Qk_H = (P1 + \/ﬁ)/Ql = 1 and so a1 = [xk+1] = [.%‘1] =
a1. This means that rows Py, Q1,71,a1 and Py, Qk+1,Zk+1,0k+1 are identical and so clearly
Q41 = Q1,042 = G2,.... So the continued fraction is [ag, a1, .-, G-

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k| P Qu Tk Gk
0] 0 1 Jn d
1| d 24 HY 1
2/ d 1 d++m 2

Justification of ag, a1, as as follows.
ap = [v/n]. But, foralld > 1,d? < d? +2d <d?*+2d+1and so d < Vd?+2d < d+1, so
that [y/n] = d, i.e. ap = d.

o'~ (45 [45] - [ -

az = [d++/n] =[d+ [Vn]] = [d+d] = [2d] = 2d.

The fact that Qo = 1 signals recurrence, so that /n = [d, 1,2d], as required.
8 marks. Seen similar on exercise sheet.

(iii) d = 5 gives n = 35 i.e. v/35 = [5,1,10].
Using initial values pg = ag,qo = 1,p1 = apa1 + 1, g1 = a1 together with the standard recurrence

relations: pgi1 = ag+1Pk + Pk—1 and ggy1 = ak+1qk + gr—1 for convergents p/q of 4/n, and the
identity p? — ng2 = (—1)*"1Qx41, we get

klar pr qk
0| 5 5 1
1 1 6 1
2110 65 11
3 1 71 12
4110 775 131
5 1 846 143

This gives three solutions: £ =6,y =1 and x =71,y = 12 and z = 846,y = 143.
6 marks. Seen similar on exercise sheet.

Question 8.

(i) Euler’s Criterion: Let p be an odd prime not dividing n. Then (%) = n(P—1/2 (mod p).

2 marks. Statement of result from lectures.

(ii) By (i), (_71) = (—1)P-D/2 =1 (mod p) < 2/(p—1)/2 < 4|(p—1) < p=1(mod4).
4 marks. Bookwork from lectures.

(iii) Gauss’ Law of Quadratic Reciprocity: Let p,q be two odd primes. If p = 1 (mod 4) or
g =1 (mod 4) then (%) = (). If p=3 (mod 4) and ¢ =3 (mod 4) then (£) = —({).
2 marks. Statement of result from lectures.



Applying this result, we see (%) = (&) for any odd prime p, since 5 = 1 (mod 4). Furthermore,

02=0,12=1,22 = 4,32 = 4,4 = 1 (mod 5), so that the quadratic residues mod 5 are: 0, 1,4,
that is: 0,1, 1 (mod 5). We can discount p = 0 (mod 5), since then p = 5 and (¥) = 0. Hence
the values of p for which the legendre symbol equals 1 are precisely p = +1 (mod 5).

4 marks. Unseen.

(iv) Let p1,po, ..., px be primes, all congruent to —1 (mod 5). Let n = 4(p1p2...pr)? — 5. Note
that pipa...pr = (=1)¥ = £1 (mod 5), so that n = 4(p1pa...pr)? —5 = 4(£1)2 -5 =4 =
—1 (mod 5). Now, let p be prime and p|n. Then p|4(p1p2...pr)? — 5 and so (2p1ps2...px)2 =
5 (mod p), giving that (%) = 1. Hence p = 1 (mod 5) [by part (iii)]. Finally, note that
it is impossible for all prime factors of n to be congruent to 1 (mod 5) [since the product of
numbers congruent to 1 (mod 5) is congruent to 1 (mod 5), whereas n = —1 (mod 5)]; hence
at least one prime p dividing n must satify p = —1 (mod 5). Thus p is a new prime, distinct
from p1,p2,..., Dk, satisfying p = —1 (mod 5) [note that p is distinct from pi,po, ..., pk, since,
if p = p; then pln = 4(pipa...pr)? — 5 and pld(p1ps - .- px)?, implying p|5, a contradiction,
since p = —1 (mod 5) and so p # 5]. Imagine there were only finitely many primes congruent
to —1 (mod 5), and that p1,...,pk lists all of them; the above argument shows the existence of
a new such prime p, a contradiction; hence there are infinitely many such primes, as required.
8 marks. Unseen.



