- 1. Let [x] denote, as usual, the greatest integer $\leq x$.
- (i) Let n > 0 be an integer. Let r be the largest power of a prime p dividing n! (that is: p^r divides n! but p^{r+1} does not divide n!). Show that

$$r = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \dots,$$

the sum being continued until the terms become zero.

- (ii) Find the number of zeros at the end of the decimal expression of 60!
- (iii) Show that, for all real numbers x, y and $z, [x] + [y] + [z] \le [x + y + z]$.
- (iv) Show that, for any positive integers a, b, c,

$$\frac{(a+b+c)!}{a!b!c!}$$

is an integer. Find the number of zeros at the end of the decimal expression of

$$\frac{60!}{10!20!30!}.$$

- **2.** (i) State and prove Fermat's theorem.
- (ii) Define the term pseudoprime. Using Fermat's theorem, or otherwise, find $3^{670} \mod 11$ and $3^{660} \mod 61$; also find $3^{670} \mod 61$. Hence or otherwise show that 671 is a pseudoprime to base 3.
- (iii) Let n be a pseudoprime to base b. Show that n is also a pseudoprime to base b^2 .
- (iv) Show that 15 is a pseudoprime to base 4, but is not a pseudoprime to base 2. For any odd integer $b \geq 3$, show that $n = b^2 1$ is a pseudoprime to base b^2 , but is not a pseudoprime to base b.
- **3.** (i) Describe Miller's test to base b for the primality of an odd integer n with (b, n) = 1. Does 25 pass Miller's test to base 7? Does 217 pass Miller's test to base 5? [You may wish first to compute 7^4 (mod 25) and 5^6 (mod 217).]
- (ii) Suppose, for some integer b and odd integer n, that $b^{n-1} \equiv 1 \pmod{n}$ and $b^{(n-1)/2} \not\equiv \pm 1 \pmod{n}$. Does n pass or fail Miller's test to base b? Show that $c = (b^{(n-1)/2} 1, n)$ is a proper factor of n [that is: c|n and $c \neq 1, c \neq n$].

2

4. Let m be an integer not divisible by 2 or 5. Consider the standard equations which occur in the calculation of the decimal expansion of $\frac{1}{m}$:

$$1 = r_1,
10r_1 = mq_1 + r_2,
10r_2 = mq_2 + r_3, etc.,$$

where $0 < r_i < m$ and $0 \le q_i \le 9$ for each i so that the q_i are the decimal digits. Prove that, for $j \ge 0$, $r_{j+1} \equiv 10^j \mod m$, and that the length of the period of 1/m in decimal notation is the order of 10 mod m.

Suppose now that m = p is prime (not equal to 2 or 5), and assume that

$$\frac{1}{p} = 0 \cdot \overline{q_1 q_2 \dots q_{2k}}$$

has even period length 2k. Show that $10^k \equiv -1 \pmod{p}$ and deduce that $r_{k+1} = p - 1$.

Show further that the sums $r_2 + r_{k+2}$, $r_3 + r_{k+3}$, etc., are all equal to p, and that the sums $q_1 + q_{k+1}$, $q_2 + q_{k+2}$, $q_3 + q_{k+3}$, etc., are all equal to 9.

- **5.** Define the function $\sigma(n)$. Show that for a prime p and integer $a \geq 1$, $\sigma(p^a) = \frac{p^{a+1}-1}{p-1}$. Write down a general formula for $\sigma(n)$.
- (i) Make a table of values of $\sigma(p^a)$ for small p and a in order to find all n for which $\sigma(n) = 42$. Does there exist n such that $\sigma(n) = 21$?
 - (ii) Use the formula for $\sigma(p^a)$ to show that

$$\sigma(p^a) < p^a \left(\frac{p}{p-1}\right).$$

Now suppose that $n = p^a q^b$ where $p \ge 3$ and $q \ge 5$ are distinct odd primes and $a \ge 1, b \ge 1$. Show that

$$\frac{\sigma(p^a)}{p^a} < \frac{3}{2}, \quad \frac{\sigma(q^b)}{q^b} < \frac{5}{4},$$

and deduce that $\sigma(n) < 2n$.

[Hint: You may find it helpful first to show the identity $\frac{p}{p-1} = 1 + \frac{1}{p-1}$]

3

6. (i) Define the term $primitive root \mod n$.

(ii) Let n=ab where a>2, b>2 and (a,b)=1. Show that $\phi(a), \phi(b)$ are both even. Show, using Euler's theorem or otherwise, that, for any g with (g,n)=1,

$$g^{\frac{\phi(n)}{2}} \equiv 1 \pmod{n}.$$

[Hint: First use $\phi(n) = \phi(a)\phi(b)$ and the fact that $\phi(a), \phi(b)$ are both even to show that the given congruence holds mod a and mod b.]

Deduce that n has no primitive roots.

(iii) Verify that 5 is a primitive root mod 34 and hence or otherwise solve the equations: (a) $23^x \equiv 15 \pmod{34}$; (b) $y^4 \equiv 21 \pmod{34}$.

7. For the continued fraction expansion $[a_0, a_1, a_2, \ldots]$ of $x_0 = \sqrt{n}$ where n is not a square, you may assume the standard formulae:

$$P_0 = 0, Q_0 = 1, \ x_k = \frac{P_k + \sqrt{n}}{Q_k}, \ a_k = [x_k], \ P_{k+1} = a_k Q_k - P_k, \ Q_{k+1} = \frac{(n - P_{k+1}^2)}{Q_k}.$$

(i) Show that $P_1 = a_0$ and $Q_1 = n - a_0^2$. Now suppose that $Q_k = 1$ for some $k \geq 1$. Show that $P_{k+1} = P_1$, $Q_{k+1} = Q_1$, and that the continued fraction recurs: $[a_0, \overline{a_1, \ldots, a_k}]$.

(ii) For the case $n=d^2+2d$ $(d \ge 1)$, show that the continued fraction expansion of \sqrt{n} is $[d, \overline{1, 2d}]$.

(iii) Find three solutions in integers x > 0, y > 0 to the equation

$$x^2 - 35y^2 = 1.$$

8. Let p denote an odd prime.

(i) State Euler's Criterion for quadratic residues.

(ii) Deduce from Euler's criterion that $(\frac{-1}{p}) = 1$ if and only if $p \equiv 1 \pmod{4}$.

(iii) State Gauss' Law of Quadratic Reciprocity. Let p be an odd prime. Show that $(\frac{5}{p}) = 1$ if and only if $p \equiv \pm 1 \pmod{5}$.

(iv) Let p_1, p_2, \ldots, p_k be primes, all congruent to $-1 \pmod{5}$, and define n by: $n = 4(p_1p_2\ldots p_k)^2 - 5$. Show that $n \equiv -1 \pmod{5}$. Now, let p be prime and p|n. Use the definition of n to show that $(\frac{5}{p}) = 1$. Deduce that $p \equiv \pm 1 \pmod{5}$. Show that at least one such prime factor p of n must be congruent to $-1 \pmod{5}$ and hence show that there must be infinitely many primes congruent to $-1 \pmod{5}$.