1. Let [z] denote, as usual, the greatest integer < z.

(i) Let n > 0 be an integer. Let r be the largest power of a prime p
dividing n! (that is: p” divides n! but p"*' does not divide n!). Show that

) el

the sum being continued until the terms become zero.
(ii)) Find the number of zeros at the end of the decimal expression of 60!
(iii) Show that, for all real numbers z,y and z, [z] + [y] + [2] < [z + y + 2]

iv) Show that, for any positive integers a, b, c,
g

(a+b+c)!
aldblc!

is an integer. Find the number of zeros at the end of the decimal expression of

60!
10!20!30!"

2. (i) State and prove Fermat’s theorem.

(ii) Define the term pseudoprime. Using Fermat’s theorem, or otherwise,
find 3%7° mod 11 and 3%%° mod 61; also find 35" mod 61. Hence or otherwise
show that 671 is a pseudoprime to base 3.

(iii) Let n be a pseudoprime to base b. Show that n is also a pseudoprime
to base b2.

(iv) Show that 15 is a pseudoprime to base 4, but is not a pseudoprime to

base 2. For any odd integer b > 3, show that n = b? — 1 is a pseudoprime to
base b?, but is not a pseudoprime to base b.

3. (i) Describe Miller’s test to base b for the primality of an odd integer n
with (b,n) = 1. Does 25 pass Miller’s test to base 77 Does 217 pass Miller’s test
to base 57 [You may wish first to compute 7* (mod 25) and 5% (mod 217).]

(ii) Suppose, for some integer b and odd integer n, that 5"~! =1 (mod n)
and b™~Y/2 £ +1 (mod n). Does n pass or fail Miller’s test to base b? Show that
c = (b™™Y/2 _1,n) is a proper factor of n [that is: c|n and ¢ # 1, ¢ # n).
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4. Let m be an integer not divisible by 2 or 5. Consider the standard equations
which occur in the calculation of the decimal expansion of %:

1 = T1,
10r; = maq + 1o,
10ry = mge + 13, etc.,

where 0 < r; < m and 0 < ¢; <9 for each 7 so that the ¢; are the decimal digits.
Prove that, for j > 0, 7;11 = 10/ mod m, and that the length of the period of
1/m in decimal notation is the order of 10 mod m.

Suppose now that m = p is prime (not equal to 2 or 5), and assume that

1
-=0-71q2- - - G
p

has even period length 2k. Show that 10¥ = —1 (mod p) and deduce that
Th+1 =p— 1.

Show further that the sums ry + rgi9, 73 + 7513, €tc., are all equal to p, and
that the sums ¢; + gx+1, 92 + Gr+2, 93 + gr+3, €tc., are all equal to 9.

5. Define the function o(n). Show that for a prime p and integer a > 1,

a(p®) = pa;j; L. Write down a general formula for o(n).

(i) Make a table of values of o(p®) for small p and a in order to find all n
for which o(n) = 42. Does there exist n such that o(n) = 217

(ii) Use the formula for o(p®) to show that
a () p
o(p*) <p (p—_ 1) :

Now suppose that n = p®g® where p > 3 and ¢ > 5 are distinct odd primes and
a>1,b> 1. Show that

and deduce that o(n) < 2n.

[Hint: You may find it helpful first to show the identity 1% =1+ Iﬁ]
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6. (i) Define the term primitive root mod n.
(ii)) Let n = ab where a > 2,b > 2 and (a,b) = 1. Show that ¢(a), ¢(b)
are both even. Show, using Euler’s theorem or otherwise, that, for any g with

(9,m) =1, "
g2 =1 (modn).
[Hint: First use ¢(n) = ¢(a)é(b) and the fact that ¢(a), ¢(b) are both even to
show that the given congruence holds mod a and mod b.]
Deduce that n has no primitive roots.

(iii) Verify that 5 is a primitive root mod 34 and hence or otherwise solve
the equations: (a) 23% =15 (mod 34); (b) y* =21 (mod 34).

7. For the continued fraction expansion [ag, ai, as, . ..] of zg = \/n where n is
not a square, you may assume the standard formulae:

Py +/n (n—Pi1)
Py=0,Qy=1, z = , =
° ° ¢ Qk Qk
(i) Show that P, = ag and Q1 = n — a3. Now suppose that @ = 1 for
some k > 1. Show that Py.1 = Pi, Qr11 = (1, and that the continued fraction
recurs: [ag, a1, -, k-
(i) For the case n = d? + 2d (d > 1), show that the continued fraction

expansion of /n is [d, 1, 2d).
(iii) Find three solutions in integers > 0,y > 0 to the equation

r? — 35y = 1.

ar = [Tk), Per1 = axQr—Pry, Qi1 =

8. Let p denote an odd prime.
(i) State Euler’s Criterion for quadratic residues.

(ii) Deduce from Euler’s criterion that (_71) = lifand only ifp = 1 (mod 4).

(iii) State Gauss’ Law of Quadratic Reciprocity. Let p be an odd prime.
Show that (%) =1 if and only if p = £+1 (mod 5).

(iv) Let pi,po,...,pr be primes, all congruent to —1 (mod 5), and de-
fine n by: n = 4(pips-..pr)? — 5. Show that n = —1 (mod 5). Now, let p
be prime and p|n. Use the definition of n to show that (g) = 1. Deduce that
p = 1 (mod 5). Show that at least one such prime factor p of n must be con-
gruent to —1 (mod 5) and hence show that there must be infinitely many primes

congruent to —1 (mod 5).
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