Solutions to MATH342 (Number Theory) May 2001 examination

Question 1.

ac — bd = (a — b)c + b(c — d) and the r.h.s. is a multiple of n since n|(a — b), n|(c — d); hence so
is the Lh.s.

1 mark.

(i) If £k = 1 (mod 2), write K = 2r + 1. First note that 10> = 100 = 1 (mod 11). So,
10F = (10%)"- 10 = 10 = —1 (mod 11), so m = 4 - 10¥ + 367 = —4 + 367 = 363 = 0 (mod 11).
3 marks.

(i) If £ = 1 (mod 3), write k¥ = 3r + 1. First note that 10®> = 1000 = 1 (mod 37). So,
10% = (10%)" - 10 = 10 (mod 37), and so m = 4 - 10¥ 4+ 367 = 40 + 367 = 407 = 0 (mod 37).
3 marks.

mod 6), write

(iii) None of n; = 1,...,6 give the required information. Take ny = 7. If k = 0 (
=1 (mod 7), and

k = 6r. First note that 10 = (1000)2 = (-1)? =1 (mod 7). So, 10* = (10%)"
som=4-10% + 367 =4+ 367 =371 =0 (mod 7).
4 marks.

(iv) None of n; = 1,...,12 give the required information. Take ny = 13. If k = 2 (mod 6), write
k = 6r 4+ 2. First note that 10¢ = (1000)2 = (-1)? = 1 (mod 13). So, 10¥ = (10%)" - 102 = 9
(mod 13), and so m = 4 - 10¥ + 367 = 36 + 367 = 403 = 0 (mod 13).

5 marks.

Collecting together the above information, we see that m = 0 modulo at least one of
11,37,7,13 for every: kK = 1 (mod 2), k¥ = 1 (mod 3), £ = 0 (mod 6), £k = 2 (mod 6); that
is: k =1,3,5 (mod 6), kK = 1,4 (mod 6), kK =0 (mod 6), kK = 2 (mod 6), which covers every
possibility mod 6. Hence m is divisible by at least one of 11,37,7,13 for every k. Since m > 37
it follows that m is composite.

4 marks. Whole question: Seen similar on an ezercise sheet.

Question 2.

Fermat’s Theorem states that: (a) If p is prime and p does not divide a then a?~! = 1 (mod p);
(b) For any a (whether p divides a or not), we have: a? = a (mod p). We say that m is a
pseudoprime to the base b if m is composite and b™ = b (mod m). When (b,m) = 1, this is
equivalent to: ¥™ ' =1 (mod m).

4 marks. From lectures.

(i) Any d|n and d|a will satisfy djn — (a®=2 + a?®*~* + ... + a®) = 1, so that (a,n) = 1. Also,
the terms a??~2,a?P~%, ..., a® will either be all even or all odd (depending on whether a is
even or odd), and there are p — 1 of these terms, which is an even number of terms. Hence,
n—1=a?®24+a® %4+ .. 4+4a?is even.

4 marks. Seen similar in lectures.

(i) a?? — 1 = n(a? — 1) = 0 (mod n), so that a®? =1 (mod n).

2 marks. Seen similar in lectures.

(iii) (n—1)(a®> —1) =n(a®> —1) — (a2 —1) = (@® —1) — (a®> — 1) = a*P —a? = a®(a®%2 —1). Since
p does not divide a, we have a?~! = 1 (mod p) by Fermat’s Theorem, and so a??~2 = (a?P~!)? =
1 (mod p), giving (n —1)(a? — 1) = a?(a®~2 —1) = a%(1 — 1) = 0 (mod p). This is the same as:
p|(n — 1)(a®? — 1); but we know that p does not divide a® — 1 so that p|n — 1. From (i) we also
know that 2|n — 1; since p is an odd prime, we can combine p|n — 1 and 2|n — 2 to give 2p|n — 1.
5 marks. Seen similar in lectures.



(iv) From (iii), we can write n — 1 = 2pr, for some integer r, so that a"~! = (a®P)" = 17
1 (mod n), by (ii).
2 marks. Seen similar in lectures.

(v) Taking a = 3, we must choose p to be an odd prime not dividing a = 3 or a®> — 1 = 8,
the smallest choice being p = 5. This gives n = (3! —1)/(3%2 — 1) = 7381. This is divisible
by 11, and so composite. Furthermore, (iv) gives that 37380 = 1 (mod 7381), and so 7381 is a
pseudoprime to the base 3.

3 marks. Unseen.

Question 3. For n > 1 define ¢(n) to be the number of integers z satisfying 1 < z < n and
(z,n) = 1. Let {z1,...,zx} be complete set of distinct residues (mod n) which are coprime
to m, so that kK = ¢(n). Let (a,n) = 1. Then each az; is coprime to n (since both of ¢ and z;
are coprime to n) and az; = ar; < z; = z; (since (a,n) = 1) <= i = j. It follows that
ari,...,azy are all distinct (mod n) and are all coprime to n, giving that {az1,...,az} is the
same set (mod n) as {r1,...,zx}. Hence (ax1)(azs) ... (azk) = 2123 ... Tk, 50 a¥ (120 ... 1) =
21%2 ... 7 (mod n). But (z1z2...7,n) = 1 (since each (z;,n) = 1), and so we can cancel
T1Zy ...z, from both sides to give a¥ = 1, that is: a®™ =1 (mod n), as required.

6 marks. Bookwork from lectures.

For a prime p and a > 1, the numbers in 1,2,...,p* which are not coprime to p® are the
multiples of p, namely: p, 2p, ..., p%, of which there are p®/p = p® ! in number. These need to be
removed from 1,2,...,p% leaving p® — p® ! numbers coprime to p®. Hence ¢(p?) = p® —p® 1 =
p®~!(p — 1), as required. Writing n = p{'" ... p}* (prime power factorization),

$(n) =p" " p—1)...pp* ok — 1)
3 marks. Bookwork from lectures.

(i) By Euler’s Theorem, since (1, 8) = 1, we have: m?®) =1 (mod 8), where ¢(8) = 22(2 — 1);
that is: m* = 1 (mod 8), giving m'%° = (m*)?»® = 1 (mod 8). Similarly, since (m,125) = 1, we
have: m?(1%) = 1 (mod 125), where ¢(125) = 52(5 — 1) = 100; that is: m!'%® = 1 (mod 125).
Since (8,125) = 1, we can deduce that m!% = 1 (1000). Since (37,10) = (21,10) = 1, we can
also deduce that 37'%° — 21190 =1 — 1 =0 (mod 1000); that is, the last 3 digits of 37190 — 21100
are: 000.

4 marks. Seen similar in lectures.

(ii) For n > 2, either n = 2* for k > 2 or n is divisible by some odd prime p. In the first case,
#(n) = 2¥~1 and in the second case, p— 1|n (using the above formula); in either case, n is even.
3 marks. Seen on an exercise sheet.

(iii) If #(n) = 2 (mod 4) then ¢(n) is not divisible by 4. From the above formula, this excludes
n being divisible by two distinct odd primes p1,po (since then ¢(n) would be divisible by (p; —
1)(p2 — 1)), and so n = 2%° for odd prime p and some integers a,b > 0. We cannot have
p =1 (mod 4) (since then 4|(p —1)|#(n), using the above formula). We cannot have a > 2 (since
then 4/2%7!|n), so that a = 0,1,2 are the only possibilities. When b = 0, so that n = 2%, we
see that ¢p(n) =2 ! =2 (mod 4) <= a=2 <= n=4. When b > 0, then we must not
have p = 1 (mod 4), since then 4|p — 1|n, using the above formula. In this case, a # 2 (since
if a = 2 then ¢(n) = 29~ 'p®~1(p — 1) would be divisible by 4, since 2|2 and 2|p — 1); when
a=0,1, (n) = p® ' = 2 (mod 4). In summary, ¢(n) = 2 (mod 4) if and only if: n = 4,p°
or 2p°, where b is a positive integer, and p is a prime = 3 (mod 4).

4 marks. Unseen.



Question 4. Miller’s test on n to base b (where n be an odd positive integer and b coprime
to n). We use (z) to denote the least positive residue of z mod n.

Step 1. Let k =n — 1, (b¥) = r. If r = 1 then continue, otherwise n fails the test.

While £ is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of (b*).

When £ fails to be even or r fails to be 1:

If r=1o0r n— 1 then n passes the test.

If r #1 and r # n — 1 then n fails the test.

5 marks. From lectures.

If n = p, prime, then »~! = 1 (mod p) by Fermat’s Theorem, and so n passes Step 1. At
any application of Step 2, we have k even and b* = 1 (mod p), so that (b¥/2)2 = v* = 1 (mod p),
and so b*/2 = £1 =1 or p — 1 (mod p) [using the fact that, for p prime, 22 = 1 has only the
solutions z = +1 (mod p)]. If b¥/2 = p — 1 (mod p) or k/2 is odd, then p passes Miller’s test to
base b, otherwise Step 2 is repeated. Therefore, when Miller’s test terminates, p will pass.

4 marks. From lectures.

(i) Base b = 2; check (2,325) = 1 so that Miller’s test is applicable. Now, 210 = 1024 =
49 (mod 325), so 220 = (219)2 = 492 = 2401 = 126 (mod 325), and 230 = 210.220 = 49.126 =
6174 = —1 (mod 325), giving: 250 = (230)2 = (-1)2 = 1 (mod 325). Now, 2324 = (260)5.220.24 =
15-126 - 16 = 2016 = 66 Z 1 (mod 325), and so 325 is neither a pseudoprime nor a strong
pseudoprime to base 2, and fails Miller’s Test to base 2.

3 marks. Seen similar on an exercise sheet.

(ii) Base b = 7; check (7,325) = 1. Now, 73 = 343 = 18 (mod 325), so that 7% = (73)2 = 182 =
324 = —1 (mod 325), and 7'2 = (75)2 = (—1)2 = 1 (mod 325). This gives: 732* = (7'2)?" =
127 = 1 (mod 325). Also, 325 = 52 - 13 is composite. Hence 325 is a pseudoprime to base 7.
Continuing to Step 2 of Miller’s Test: 7162 = (712)13 .76 = 113. 324 (mod 325). So 325 passes
Miller’s Test to base 7, since 324 = 325 — 1. Hence 325 is a strong pseudoprime to base 7.

2 marks. Seen similar on an exercise sheet.

(iii) Base b = 24; check (24,325) = 1. Now, 243 = 13824 = 174 (mod 325), and 24% =
(243)? = 174? = 30276 = 51 (mod 325), and 24!? = (24%)? = 512 = 2601 = 1 (mod 325). So
24324 = (2412)27 = 127 = 1 (mod 325). Hence 325 is a pseudoprime to base 24. Continuing to
Step 2: 24162 = (2412)13.24% = 113. 51 (mod 325), so 325 fails Miller’s Test to base 24, since 51
is not congruent to 1 or 324 (mod 325). Hence 325 is not a strong pseudoprime to base 24.

3 marks. Seen similar on an exercise sheet.

(iv) Base b = 126; check (126,325) = 1. Now, 1262 = 15876 = 276 (mod 325), and 1263 =
126 - 1262 = 126 - 276 = 34776 = 1 (mod 325). This gives: 12632 = (1263%)!9%® = 1108 =
1 (mod 325). Hence 325 is a pseudoprime to base 126. Continuing to Step 2 of Miller’s test:
126'62 = (126%)%* = 1% = 1 (mod 325). Continuing: 1268! = (1263)%” = 12" = 1 (mod 325).
Now we stop, since the exponent is odd, with 325 passing Miller’s Test to base 126. Hence 325
is a strong pseudoprime to base 126.

3 marks. Seen similar on an exercise sheet.

Question 5. The order of a mod n is the smallest integer k£ > 1 such that o* = 1 (mod n). We
say that g is a primitive root mod n if ord,g = ¢(n).

2 marks. Definitions from lectures.

(i) First recall the standard results from lectures:

(*) a* = 1 (mod n) <= ord,(a)lk. (**) ord,(a)|p(n).

To show that ord,2 = 2¥! we have to show (mod p):

(a) 22" =1, (b) If r < 251 then 27 # 1.



For (a), note that p|Fy so 22 = _1 mod p. Squaring gives the result required.

For (b), note first that, by (a) and (*), the order of 2 mod p is a factor of 2¥*1. Hence the
order is a power of 2, say: ord,2 = 2" for some r,0 <7 < k + 1. We want to prove that in fact
r = k + 1 so assume for a contradiction that r < k. Hence 22" = 1 (mod p) and by squaring
this £ — r times we will get 22° =1 mod p. But this contradicts the fact that 22" = 1 mod p.
(Note that p certainly cannot be 2 since Fy, is odd.)

The last part, 25%1|4(p) = (p — 1), follows immediately from the above and (**).

Finally, for k = 5, any prime factor p|F5 must therefore satisfy 26|p — 1 and so p = 1 (mod 64).
The only possibilities < 100 are 1, 65, neither of which are prime.
9 marks. Unseen.
(ii) Working out powers of 3 mod 17 gives
k|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3*mod17|3 8 7 4 5 2 6 -1 3 8 7 4 5 2 6 1

This verifies that ord;73 = 16 = ¢(17), so that 3 is a primitive root mod 17. Then:

4% = 8 (mod 17) <= 32 = 30 (mod 17) <= 12z = 10 (mod 16),

which has no solution, since (12,16) = 4 which does not divide 10.

For !9 = 2 (mod 17), note that this implies that (y,17) = 1 since any common factor of y, 17

would also have to divide and the r.h.s. 2 of the congruence, and so would be a common factor

of 2,17, which are coprime. Hence we can write 3 as a power of the primitive root 3; that is:

y = 3% (mod 17), for some z. Then: ' = 2 (mod 17) <= 3!0% = 3 (mod 17) <= 10z =
14 (mod 16) <= 5z = 7(mod 8) <= z =3(mod 8) <= z = 3,11 (mod 16) <— y =
¥ =10,7(mod 17). Thus, the two solutions are: y = 7,10 (mod 17).

9 marks. Seen similar on an exercise sheet.

Question 6. o(n) = the sum of the divisors of n which are > 1.
p? has divisors 1,p,p?,...p* L,p®so o(p®) =1+p+p?+...p% = (p*t' - 1)/(p — 1).
1

n n pn1+l 1 pnk+ -1
141 — 1 k . — 2 — k
Writing n = p7' ... p,*, we have: o(n) = T T

3 marks. From lectures.

(i) Here is a table of values of o(p®) for small p and a. Since all rows and columns are strictly
increasing, any further entries would be greater than 32 and so are irrelevant.

al p—>| 2 3 5 7 11 13 17 .. 31
1 3 4 6 8 12 14 18 .. 32
2 7 13 31 57
3 15 40
4 31
5 63

Now the following give all the ways of writing 32 as a product of entries in different columns
of the table: 32 or 4 - 8. These give
n =31, 3.7, that is: n = 31,21 are the only solutions to o(n) = 32.
7 marks. Seen similar on ezercise sheet.

(i) o(n) = 0(2%)o(2°T! — 1) [since (2%,25T1 —1) = 1]. But 0(2°) = (2°71 —-1)/(2—1) = 25T -1,
by the formula in (i), and o(25Tt — 1) = 1 + (257! — 1) [since 2°*! — 1 is prime]. So:

a(n) = (2571 — 1)(1 + (2871 — 1)) = 25F1(25F1 — 1) = 2(25(25*! — 1)) = 2n. Hence n is perfect.
4 marks. Bookwork from lectures.

(iii) Let n be an even perfect number, and let s be the highest power of 2 dividing n (s > 1).
That is, n = 2%t, where s > 1 and ¢ is odd. Then:

4



25+t = 2n = g(n) [since n is perfect] = o(2°t) = 0(2%)o(t) [since (2°,t) = 1] = (2°F1 —1)o(t).
That is: (*) 257 = (25F1 — 1)o(2).

So 25+1|(2571 — 1)o(t). But (25F1, 257t — 1) = 1, so 25710 (t), which means that we can write
o(t) = 25T1q for some integer ¢ > 1. Substituting into (*) gives: 251t = (2571 — 1)25t1q.

That is: (**) t = (257! - 1)q.

Imagine that ¢ > 1. We have from (**) that g|¢, and that q # ¢ [since s > 1 and so 2571 —1 > 1].
Then 1, ¢,t are all distinct divisors of ¢, giving: o(t) > 1+ ¢+ ¢t. But then:

o(t) =25%g = (2T — 1)g + g =t + ¢ [by (**)], a contradiction.

Hence ¢ = 1. So o(t) = 25F1g = 251 = ¢t +1 [since (**) and g = 1 give ¢t = 25! —1]. Therefore ¢
only has divisors 1,¢ giving that ¢ is prime. In summary, n = 25t = 25(25+1 —1), with ¢ = 25t -1
prime, as required.

6 marks. (Harder) Bookwork from lectures.

Question 7.
(i) First, note P, = agQo —FPp=ap-1—-0=ag = [\/’I_l]
and Q1 = (n — P{)/Qo = (n— P})/Qo = (n —aj)/1 = n — af.

Suppose Q = 1 for some k > 1. Then zy = Py + v/n so ay = [zx] = Py + [v/n] = Py + ao.
That is, ap — P, = ag. Hence,

Poi1 = apQp — Py =ar — Py =ao = Py and Q41 = (n — PZ,)/Qk = (n — ag)/1 = Q1.
Furthermore, g1 = (P11 + \/ﬁ)/Qk-f—l = (P + \/ﬁ)/Ql = 17 and 80 agy1 = [$k+1] = [:L‘l] =
a1. This means that rows P, Q1, 1,01 and Pxi1,Qkt1,Tk+1,0k+1 are identical and so clearly
ak+1 = G1,Qk+2 = G2, . ... So the continued fraction is [ag, a1, .-, G-

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k Py Qk Ty, ag
0 0 1 Jn  d—1
1|d-1 2d-3 d-Liyn 1
2|d—2 2 2V g9
3/d—2 2d—3 “+f 1
41d-1 1 d—1+\/_ 2d — 2

Justification of ag, a1, a9 as follows.

aoz[\/ﬂ. But, for all d > 3:
(d—1)2=d? - 2d+1—d2—2( —2)-3<d®—2(d—-2)—2<d?>—2[sinced—2>0] <d?
andsod—1<+Vd?-2<d, sothat[\/ﬁ]—d—l ie. ag=d—1.

o = [St] = (St = 3] =

a2_[d2+f] [d2-|— ]:[ 3]:
o = [55297] = [0y = [345] -
ar=[d—1++/n]=[d —1+[ﬂ]_[2d—2]_2d—2.

The fact that Q4 = 1 signals recurrence, so that \/n = [d—1,1,d — 2,1,2d — 2], as required.
9 marks. Seen similar on an ezercise sheet (although this one is harder).

(iii) d = 5 gives n = 23 i.e. V23 =[4,1,3,1,8]. Using py = ag,q0 = 1,p1 = apa1 + 1,q1 = a1,
together with the standard recurrence relations: py+1 = agt+1pk +Pk—1 and gr+1 = ak+19% + k-1
for convergents p/q of /n, and the identity pZ — ng? = (—1)*1Qg1, we get



klax pe qr
0 4 4 1
11 5 1 This gives the solution: z = 24,y = 5.
21 3 19 4
311 24 5

5 marks. Seen similar on an exercise sheet.

Question 8.

(i) Euler’s Criterion: Let p be an odd prime not dividing n. Then (%) = n=1/2 (mod p).

1 mark. Statement of result from lectures.

(i) By (i), (31 = (-1)®™/2 =1 (mod p) <= 2|(p—1)/2 <= 4|(p—1) <= p=1(mod 4).
3 marks. Bookwork from lectures.

(iii) By (i), (%) = 2(P=1)/2 (mod p). Now note that, if 1 < r,s < (p—1)/2 and 2r = +2s (mod p),
then r = +s (mod p) [since (2,p) = 1] and so 7 = s. Hence the numbers (*) given by:
2-1,2-2,...2-(p—1)/2 have least absolute residues mod p with distinct absolute values. Let
(**) be the same list of numbers, except with each number replaced by its least absolute residue
mod p, which gives (p — 1)/2 nonzero numbers of distinct absolute value, and so their absolute
values must be 1,2,...,(p — 1)/2 in some order. Equating the product of (*) with that of (**)
mod p, and cancelling 1-2 ... (p — 1)/2, gives that 2?°=1)/2 = (—=1)™ (mod p), where m is
the number of minus signs in (**), which is the same as the number of members z of (*) in the
range (p —1)/2 < ¢ < p. Any odd prime p = £+1,+3 (mod 8), and in each case, we need to
check whether m is even, in which case (%) =1, or m is odd, in which case (2) = —1.

Case 1. p =1 (mod 8), that is p = 8k + 1 for some k. Then (p—1)/2 = 4k, and (*) has precisely
the 2k numbers 4k + 2,4k + 4, ..., 8k in the range (p — 1)/2 < x < p. Thus m = 2k is even, and
so (2) =1.

Casé 2. p = —1 (mod 8), that is p = 8k — 1 for some k. Then (p —1)/2 = 4k — 1, and (*) has
precisely the 2k numbers 4k,4k + 2,...,8k — 2 in the range (p — 1)/2 < z < p. Thus m = 2k is
even, and so (p) =1.

Case 3. p = 3 (mod 8), that is p = 8k + 3 for some k. Then (p — 1)/2 = 4k + 1, and (*) has
precisely the 2k + 1 numbers 4k + 2,4k +4,...,8k + 2 in the range (p — 1)/2 < z < p. Thus
m = 2k + 1 is odd, and so (%) =-1.

Case 4. p = —3 (mod 8), that is p = 8k — 3 for some k. Then (p —1)/2 = 4k — 2, and (¥)
has precisely the 2k — 1 numbers 4k,4k + 2,...,8k — 4 in the range (p — 1)/2 < z < p. Thus
m = 2k — 1 is odd, and so (%) = -1

8 marks. Bookwork from lectures.

(iv) Let p1,po,...,pr be primes, all congruent to 5 (mod 8). Let n = (p1p2...px)% + 4. Note
that 52 = 25 = 1 (mod 8), so that n = (p1p2...px)> +4 =pip5...pt +4=1+4=5 (mod 8).
Now, let p be prime and p|n Then p|(p1p2---pk)? + 4 and so (p1ps-..pp)? = —4 (mod 8),
giving that (- 4) = 1. But (5 1) = (_1)(4) and (p) = 1 [since 4 = 22 (mod p)], so that (5 1y = 1.
Hence p = 1 (mod 4) [by part ii) ]pwhlch is the same as p = 1 or 5 (mod 8). Finally, note
that it is impossible for all prime factors of n to be congruent to 1 (mod 8) [since the product
of numbers congruent to 1 (mod 8) is congruent to 1 (mod 8), whereas n = 5 (mod 8)]; hence
at least one prime p dividing n must satify p = 5 (mod 8). Thus p is a new prime, distinct
from p1,po,...,pk, satisfying p = 5 (mod 8) [note that p is distinct from p1,pa, ..., pk, since,
if p = p; then pln = (p1p2...px)% + 4 and p|(p1p2 ... px)?, implying p|4, a contradiction, since
p = 5 (mod 8) and so p is odd]. Imagine there were only finitely many primes congruent
to 5 (mod 8), and that p1,...,pg lists all of them; the above argument shows the existence of a
new such prime p, a contradiction; hence there are infinitely many such primes, as required.

8 marks. Unseen.



