- **1.** Show that, if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$. Let $m = 4 \cdot 10^k + 367$ where k is an integer ≥ 0 .
 - (i) Show that $k \equiv 1 \pmod{2} \Rightarrow m \equiv 0 \pmod{11}$.
 - (ii) Show that $k \equiv 1 \pmod{3} \Rightarrow m \equiv 0 \pmod{37}$.
 - (iii) Find a number $n_1 > 1$ such that $k \equiv 0 \pmod{6} \Rightarrow m \equiv 0 \pmod{n_1}$.
 - (iv) Find a number $n_2 > 1$ such that $k \equiv 2 \pmod{6} \Rightarrow m \equiv 0 \pmod{n_2}$.

Deduce that m is composite for every k.

2. State Fermat's Theorem. Define the term pseudoprime.

Let a be an integer > 1 and let p be an odd prime such that p does not divide a, and p does not divide $a^2 - 1$. Let

$$n = \frac{a^{2p} - 1}{a^2 - 1} = a^{2p-2} + a^{2p-4} + \dots + a^2 + 1.$$

- (i) Show that (a, n) = 1 and that n 1 is even.
- (ii) Show that $a^{2p} \equiv 1 \pmod{n}$.
- (iii) Show that $(n-1)(a^2-1)=a^2(a^{2p-2}-1)$ and deduce from Fermat's Theorem that $p \mid n-1$. Deduce from (i) that $2p \mid n-1$.
 - (iv) Deduce from (ii) and (iii) that $a^{n-1} \equiv 1 \pmod{n}$.
- (v) Taking a=3 and the smallest allowable value of p, find a pseudoprime to the base 3.
- **3.** Define Euler's ϕ -function. Prove Euler's Theorem, that if (b, n) = 1 then $b^{\phi(n)} \equiv 1 \pmod{n}$.

Show that, for a prime p and $a \ge 1$,

$$\phi(p^a) = p^{a-1}(p-1).$$

Write down a general formula for $\phi(n)$.

- (i) Show that $m^{100} \equiv 1 \pmod 8$ and $m^{100} \equiv 1 \pmod {125}$ for any integer m satisfying (m, 10) = 1. What are the last 3 digits of $37^{100} 21^{100}$?
 - (ii) Show that $\phi(n)$ is even for all n > 2.
 - (iii) Describe all n such that $\phi(n) \equiv 2 \pmod{4}$.

4. Describe Miller's test to base b for the primality of an odd integer n with (b, n) = 1. Explain why, if n is prime then it always passes Miller's test.

For each of the following values of b, apply Miller's test on 325 to base b. In each case, decide whether 325 is a pseudoprime to base b, and whether 325 is a strong pseudoprime to base b.

(i) b = 2, (ii) b = 7, (iii) b = 24, (iv) b = 126.

[You may find it helpful first to compute 2^{60} , 7^{12} , 24^{12} and 126^3 (mod 325).]

- **5.** Define what is meant by $\operatorname{ord}_n a$, the *order* of $a \mod n$. Define what it means for a to be a *primitive root* mod n.
- (i) Suppose that p is prime and $p \mid F_k$, where $F_k = 2^{2^k} + 1$. Show that $\operatorname{ord}_p 2 = 2^{k+1}$ and deduce that $2^{k+1} \mid p-1$. Show that F_5 has no prime factor $p \leq 100$.
- (ii) Verify that 3 is a primitive root mod 17. Hence find all solutions x to $4^x \equiv 8 \pmod{17}$. Solve also $y^{10} \equiv 2 \pmod{17}$.

- **6.** Define the function $\sigma(n)$. Show that for a prime p and integer $a \geq 1$, $\sigma(p^a) = \frac{p^{a+1}-1}{p-1}$. Write down a general formula for $\sigma(n)$.
- (i) Make a table of values of $\sigma(p^a)$ for small p and a in order to find all n for which $\sigma(n) = 32$.
- (ii) Show that, if $2^{s+1} 1$ is prime, then $n = 2^s(2^{s+1} 1)$ is a perfect number.
- (iii) Show that, if n is an even perfect number, then there exists an integer s such that $2^{s+1} 1$ is prime and $n = 2^s(2^{s+1} 1)$.

3

4

7. For the continued fraction expansion $[a_0, a_1, a_2, \ldots]$ of $x_0 = \sqrt{n}$ where n is not a square, you may assume the standard formulae:

$$P_0 = 0, Q_0 = 1, \ x_k = \frac{P_k + \sqrt{n}}{Q_k}, \ a_k = [x_k], \ P_{k+1} = a_k Q_k - P_k, \ Q_{k+1} = \frac{(n - P_{k+1}^2)}{Q_k}.$$

- (i) Show that $P_1 = a_0$ and $Q_1 = n a_0^2$. Now suppose that $Q_k = 1$ for some $k \geq 1$. Show that $P_{k+1} = P_1$, $Q_{k+1} = Q_1$, and that the continued fraction recurs: $[a_0, \overline{a_1, \ldots, a_k}]$.
- (ii) For the case $n = d^2 2$ $(d \ge 3)$, show that the continued fraction expansion of \sqrt{n} is $[d-1, \overline{1, d-2, 1, 2d-2}]$.
 - (iii) Find a solution in integers x > 0, y > 0 to the equation

$$x^2 - 23y^2 = 1.$$

- 8. Let p denote an odd prime.
 - (i) State Euler's Criterion for quadratic residues.
 - (ii) Deduce from Euler's criterion that $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \pmod{4}$.
 - (iii) Deduce from Euler's criterion that $(\frac{2}{p}) = 1$ if and only if $p \equiv \pm 1 \pmod{8}$.
- (iv) Let p_1, p_2, \ldots, p_k be primes, all congruent to 5 (mod 8), and define n by: $n = (p_1 p_2 \ldots p_k)^2 + 4$. Show that $n \equiv 5 \pmod{8}$. Now, let p be prime and p|n. Use the definition of n to show that $\left(\frac{-4}{p}\right) = 1$, and deduce that $\left(\frac{-1}{p}\right) = 1$. Deduce that $p \equiv 1$ or 5 (mod 8). Show that at least one such prime factor p of n must be congruent to 5 (mod 8) and hence show that there must be infinitely many primes congruent to 5 (mod 8).