1. Show that, if a = b (mod n) and ¢ = d (mod n), then ac = bd (mod n).
Let m = 4 -10% + 367 where k is an integer > 0.
(i) Show that £k =1 (mod 2) = m =0 (mod 11).
(ii) Show that £ =1 (mod 3) = m = 0 (mod 37).
(iii) Find a number n; > 1 such that £ = 0 (mod 6) = m = 0 (mod n;).
(iv) Find a number ny > 1 such that £ = 2 (mod 6) = m =0 (mod ny).
Deduce that m is composite for every k.

2. State Fermat’s Theorem. Define the term pseudoprime.

Let a be an integer > 1 and let p be an odd prime such that p does not
divide a, and p does not divide a? — 1. Let

a®? — 1

=a® 24+ +ad®+1.
a? —1

n =

(i) Show that (a,n) =1 and that n — 1 is even.

(i) Show that a®” =1 (mod n).

(iii) Show that (n — 1)(a® — 1) = a*(a®* 2 — 1) and deduce from Fermat’s
Theorem that p|n — 1. Deduce from (i) that 2p|n — 1.

(iv) Deduce from (ii) and (iii) that a"~! =1 (mod n).

(v) Taking a = 3 and the smallest allowable value of p, find a pseudoprime
to the base 3.

3. Define Euler’s ¢-function. Prove Euler’s Theorem, that if (b,n) = 1 then
b?™ =1 (mod n).

Show that, for a prime p and a > 1,

Write down a general formula for ¢(n).

(i) Show that m'® =1 (mod 8) and m'® = 1 (mod 125) for any integer m
satisfying (m,10) = 1. What are the last 3 digits of 37'%0 — 211007

(ii) Show that ¢(n) is even for all n > 2.
(iii) Describe all n such that ¢(n) = 2 (mod 4).
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4. Describe Miller’s test to base b for the primality of an odd integer n with
(b,n) = 1. Explain why, if n is prime then it always passes Miller’s test.

For each of the following values of b, apply Miller’s test on 325 to base b. In
each case, decide whether 325 is a pseudoprime to base b, and whether 325 is a
strong pseudoprime to base b.

(i) b=2, (i) b="7, (ili) b=24, (iv) b= 126.
[You may find it helpful first to compute 20, 712, 24'2 and 126 (mod 325).]

5. Define what is meant by ord,a, the order of @ mod n. Define what it
means for a to be a primitive root mod n.

(i) Suppose that p is prime and p | Fy, where Fj, = 22 4+ 1. Show that
ord,2 = 21 and deduce that 27! |p — 1. Show that F5 has no prime factor
p < 100.

(ii) Verify that 3 is a primitive root mod 17. Hence find all solutions z to
4% = 8 (mod 17). Solve also y** = 2 (mod 17).

6. Define the function o(n). Show that for a prime p and integer a > 1,
o(p*) = ’%. Write down a general formula for o(n).

(i) Make a table of values of o(p*) for small p and a in order to find all n
for which o(n) = 32.

(i) Show that, if 2°T1 — 1 is prime, then n = 2°(2°t! — 1) is a perfect
number.

(iii) Show that, if n is an even perfect number, then there exists an integer s
such that 257! — 1 is prime and n = 25(25*! — 1).
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7. For the continued fraction expansion [ag, a1, ag, ...] of g = \/n where n is
not a square, you may assume the standard formulae:

P, +/n n— P?
POZO;QO:L-Tk:kT\/_ (Qikﬂ)
k k

(i) Show that P, = ag and @Q; = n — a3. Now suppose that Q; = 1 for
some k > 1. Show that Py.1 = Pi, Qrs1 = @1, and that the continued fraction
recurs: [ag, a1, .-, k-

(i) For the case n = d> — 2 (d > 3), show that the continued fraction
expansion of \/n is [d —1,1,d —2,1,2d — 2].

(iii) Find a solution in integers > 0,y > 0 to the equation

, @ = [xk], Prp1 = axQr—Pry Qi1 =

z? —23y% = 1.

8. Let p denote an odd prime.

(i) State Euler’s Criterion for quadratic residues.
(ii) Deduce from Euler’s criterion that (_71) = lifand only if p = 1 (mod 4).

(iii) Deduce from Euler’s criterion that (1—2)) = lifand only if p = +1 (mod 8).

(iv) Let p1,pa,...,pr be primes, all congruent to 5 (mod 8), and define n
by: n = (pip2-..px)? + 4. Show that n = 5 (mod 8). Now, let p be prime and
p|n. Use the definition of n to show that (’74) = 1, and deduce that (’71) = 1.
Deduce that p = 1 or 5 (mod 8). Show that at least one such prime factor p of n
must be congruent to 5 (mod 8) and hence show that there must be infinitely
many primes congruent to 5 (mod 8).
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