Solutions to MATH342 (Number Theory) May 2000 examination

Question 1.

(i) Let the integer d be a common divisor of « and S, that is: d|a and d|f; then d|(a + kf) and
so d is a common divisor of a + kS and 3. Conversely, let d be a common divisor of a + kf3
and 8. Then d|(a + kB) — kB = «, so that d is a common divisor of @ and . Hence, the set
of common divisors of «, 8 is the same as the set of common divisors of o + k3, 3, and so the
greatest common divisor is the same in each case; that is: (a,8) = (a + k3, 8). The same type
of argument shows: (a, 8) = (a, 8 + ka).

4 marks. Bookwork from lectures.

(ii) Repeated applications of part (i) give: (23 — 2,22 +1) = (23 — 2 — z(2? + 1),2% + 1)
= (—2-2,22+1) = (22, 2%+ 14+2(-2-2)) = (-v-2,—2z+1) = (—x-2, —22+1-2(-1-2))
= (-z—2,5) = (+2,5), which is 5 when 5|(z+2) and is 1 otherwise. Hence: (z*—2,2%+1) =5
when z = 3 (mod 5) and (23 — 2,22 + 1) = 1 otherwise.

4 marks. Seen similar on an ezercise sheet.

(iii) On dividing 2™ — 1 by  — 1 we get the standard equation: z"™ — 1 = (z — 1) f(x) where
f(x) =21+ 2" 24273 + ...+ 1. Clearly f(z) is an integer (since x is an integer) and so
(2" —1)/(z — 1) = f(x) is an integer.

Dividing the polynomial f(z) = z" ! 4+ 2" 2 + 2”3 +... + 1, found above, by z — 1 gives
(z" —1)/(z — 1) = (z — 1)g(z) +n, where g(z) = 2" 2+ 22" 3+ 32" * +... + (n — 1). Hence,
by part (i), ((z" —1)/(z — 1),z —1) = (=" = 1)/(z = 1) = (z — D)g(z),z — 1) = (n,z - 1).

5 marks. Unseen.

(iv) Replacing x by n® and n by ¢ in the equation z™ — 1 = (z — 1) f(z) of part (iii) gives:
) —1=m> -1 ()T + ") 2+ ... +1).
Multiplying both sides by n” and then adding n" — 1 to both sides gives
nbFT 1 = (b — 1)(nba DI @2t oy (7 - 1),

Since a = bg + r, this is of the form A = BQ + R, where Q = nb(¢=D+r 4 pbla=2)+r 4 4 pr,
It follows that (A, B) = (A — BQ, B) = (R, B), and that the first step of Euclid’s Algorithm for
finding (A, B) is identical to that for finding (a,b), but with a, b, r replaced by A =n%—-1,B =
n® —1, R = n" — 1. Repeatedly applying the same argument shows that the same must be true
of all subsequent steps of Euclid’s Algorithm, and so the final nonzero remainders: (a,b) and
(A, B) are related in the same way, that is: (4, B) = n(®Y — 1, as required. We can therefore
compute (357 — 1,309 — 1) = 30769 _1 =33 1 = 26.

7 marks. Seen similar in lectures.



Question 2.
(i) 22 = z (mod 216) = 216 | (22 — z) = 8 | 216 | (2 — ) and 27 | 216 | (22 — )
= 22 = 7 (mod 8) and z? = z (mod 27).
The arrows in the above argument can be reverse (giving the required <= ) by using the facts
that 216 = 8 x 27, where (8,27) = 1, and the standard fact that:

mla, n|a (mn)=1=mn|a (¥

2 marks. Seen similar on an exercise sheet.

Now use the standard fact, for any prime p and any a, b with (a,b) = 1, that: p"|ab <= p"|a or
p"|b. Since (z,r —1) = 1, this gives: 22 =z (mod 8) «<= 23 | (2? —z) <= 2} |z(z - 1) <
22 |zor23 | (z—1) <= z=0o0r1 (mod 8).

Similarly, z2 = z (mod 27) <= z =0 or 1 (mod 27). Therefore:

z? = 2 (mod 216) <= (z=0or 1 (mod 8)) and (z =0 or 1(mod 27)).

(a) x =0 (mod 8) and z = 0 (mod 27). Then z =0 (mod 216) by (*).
(b) z =1 (mod 8) and z =1 (mod 27). Then z =1 (mod 216) by (*).

(¢) 2 =0 (mod 8) and z = 1 (mod 27). Then z = 8k and 8k = 1 (mod 27). The inverse of 8
is 17 (mod 27), since 8 x 17 = 136 = 1 (mod 27) [found either by Euclid’s Algorithm or trial
and error]. Multiplying both sides of the congruence by 17 gives: & = 17 (mod 27), and so
z = 8k = 136 (mod 216).

(d) x =1 (mod 8) and x = 0 (mod 27). Then z = 27k and 27k = 1 (mod 8), that is:
3k =1 (mod 8), since 27 = 3 (mod 8). The inverse of 3 is 3 (mod 8), since 3 x3 =9 =1
(mod 8) [found either by Euclid’s Algorithm or trial and error]. Multiplying both sides of the
congruence by 3 gives: kK = 3 (mod 27), and so z = 27k = 81 (mod 216).

Thus, the solution to the congruence is: z =0, 1,81,136 (mod 216).
7 marks. Seen similar on an exercise sheet.

(ii) Fermat’s Theorem states that:
(a) If p is prime and p does not divide a then a? ! =1 (mod p).
(b) For any a (whether p divides a or not), we have: a? = a (mod p).

Proof.

(a) Consider a,2a,...,(p—1)a (*). For any j in the range 1 < j < (p—1), we have pf j. Since
also p [/ a, it follows that p} ja; that is, none of the numbers in (*) is congruent to 0 (mod p). Also,
imagine ia = ja (mod p) for i # j (say, i < j) and 1 <i,5 < (p—1); then (i — j)a = 0 (mod p)
and sop | (¢ —j)a; but pJ (i —j), since 0 < i —j < p, and so pla, a contradiction. Hence ia # ja
whenever i # j, 1 <i,j < (p—1). It follows that the numbers: a,2a,...,(p—1)a are all distinct

mod p and none are 0 mod p. For each of the p — 1 numbers q, 2aq, ..., (p — 1)a there are only
p — 1 possibilities mod p: 1,2,...,p — 1. It follows that {a,2a,...,(p — 1)a} is the same set as
{1,2,...,p — 1}, possibly with a different order. Hence a¢-2a-...-(p—1)a=1-2-...-(p—1);

that is: (p — 1)!a? ! = (p — 1)! (mod p). Clearly ((p — 1)!,p) = 1 [since each of 1,...,p — 1 is
coprime to p], and so a? ! =1 (mod p), as required.
(b) If pf a, then we have already shown a?~! = 1 (mod p). Multiplying both sides by a gives

aP = a (mod p). If p | a then a? = a (mod p) is trivially true, since a? = 0 and a = 0 (mod p).
5 marks. Bookwork from lectures.



Suppose n? = —1 (mod 7). Then 7 f n [since if 7| n then the LHS would be 0 (mod 7)]. Cubing
both sides gives: n® = —1 (mod 7). But, by Fermat’s Theorem, n% = 1 (mod 7) since 7} n.
Hence n? = —1 (mod 7) is impossible, since —1 #Z 1 (mod 7).

3 marks. Unseen.

If p=28/+5 and n* = —1 (mod p) then pfn [since if p| n then the LHS would be 0 (mod p)].
Taking both sides to the power of (2¢ + 1) gives: (n)%*t1) = —1 (mod p), that is: n?~ 1 =
—1 (mod p). But, by Fermat’s Theorem, n?~! = 1 (mod p), since p/ n. Hence n* = —1 (mod p)
is impossible, since —1 # 1 (mod p) [since p # 2]. That is: pJ (n* + 1), as required.

3 marks. Unseen.

Question 3. For n > 1 define ¢(n) to be the number of integers z satisfying 1 < z < n

and (z,n) = 1. For a prime p and a > 1, the numbers in 1,2,...,p% which are not coprime
to p® are the multiples of p, namely: p,2p,...,p%, of which there are p?/p = p® ! in number.
These need to be removed from 1,2,...,p%, leaving p® — p® ! numbers coprime to p®. Hence

$(p*) = p*—p*~! = p®~(p—1), as required. Writingn = p7'...p}* (prime power factorization),

$(n) =pP*~Hp—1)...pp* (pe — 1).
3 marks. Bookwork.

(i) Here is a table of ¢(p®) for small values of the prime p and the exponent a > 1. Since all
rows and columns are strictly increasing, any further entries would be greater than 20 and so
are irrelevant.

al p—| 2 3 5 7 11 13 17 19 23
1 1 2 4 6 10 12 16 18 22
2 2 6 20
3 4 18 100
4 8 54
5 16
6 32

Now the following give all the ways of writing 20 as a product of entries in distinct columns of
the table: 20 = 20, corresponding to n = 5%; 20 = 1-20, corresponding to n = 2' -52; 20 = 2- 10,
corresponding to n = 3!-111 or n = 22.11!; 20 = 1-2-10, corresponding to n = 2! -3 - 11! (note
that 4 never occurs as an entry, so that 20 = 4 -5 is not available). So, n = 25, 33, 44,50, 66 are
the only n satisfying ¢(n) = 20. Finally note that neither 7 nor 14 occur as entries, so that 14
can never be attained as a product of entries; hence there does not exist n for which ¢(n) = 14.
9 marks. Seen similar on an exercise sheet.

(ii) For p = —1 (mod 12) and a even, ¢(p?) = p®~L(p — 1) = (-1)*"}(-2) = (-1)(-2) =
2 (mod 12).
2 marks. Unseen.



(iii) Let p > 3 be prime and let b > 3 be odd. Then p is not divisible by 2,3 and so we
can eliminate 0, 2,3,4,6,8,9,10 from 0,1,...,11, leaving 1,5,7, 11 as the only possible numbers
congruent to p (mod 12); that is: £1,£5 (mod 12).
p=1(mod 12) = ¢(p®) =p*1(p—1)=1""1.0=0 # 2 (mod 12).
p=—1(mod 12) = ¢(»*) =p* L(p—1) = (-1’1 - (=2) =1 (-2) [since b — 1 is even]
£ 2 (mod 12).
5 (mod 12) = ¢(p®) = p*~1(p— 1) =5°"1 -4 # 2 (mod 12) [since (5°~1-4,12) =4/ 2].
—5 (mod 12) = ¢(p®) = p*1(p — 1) = (=5)>"1 - (—6) # 2 (mod 12)
[since ((—5)°~1-(—6),12) =6/ 2].

p
p
6 marks. Unseen.

Question 4.
(1) Miller’s test on n to base b (where n be an odd positive integer and b coprime to n). We use
(z) to denote the least positive residue of z mod n.
Step 1. Let k =n — 1, (b¥) = r. If r = 1 then continue, otherwise n fails the test.
While k is even and r = 1 then repeat the following.
Step 2. Replace k by k/2, and replace r by the new value of (b*).
When £ fails to be even or r fails to be 1:
If r =1 or n— 1 then n passes the test.
If r #1 and 7 # n — 1 then n fails the test.
5 marks. From lectures.

(a) Base b = 2; check (2, 85) = 1 so that Miller’s test is applicable. Now, 28 = 256 = 1 (mod 85),
so 284 = (28)10 x 24 = 1% x 16 = 16 (mod 85). Thus, 85 fails Miller’s test to base 2 at Step 1,
and so 85 is a not even a pseudoprime to base 2.

2 marks. Seen similar on an exercise sheet.

(b) Base b = 4; check (4,85) = 1 so that Miller’s test is applicable. Now, 4* = 2% =1 (mod 85),
so 4% = (4%)?! = 12! = 1 (mod 85). Thus, 85 passes Step 1 of Miller’s test, and so 85 is
a pseudoprime to base 4. Moving onto Step 2, compute 4*2 = 28 = 16 (mod 85), which is
neither 1 nor 85 — 1 (mod 85), and so 85 fails Miller’s test to base 4. Thus 85 is a not a strong
pseudoprime to base 4.

3 marks. Seen similar on an exercise sheet.

(c) Base b = 13; check (13,85) = 1 so that Miller’s test is applicable. Now, 132 = 169 =
—1 (mod 85), so 13%* = (13%)*2 = (—1)*2 = 1 (mod 85). Thus, 85 passes Step 1 of Miller’s test,
and so 85 is a pseudoprime to base 13. Moving onto Step 2, compute 1342 = (13%)2! = (-1)?! =
—1 (mod 85). Thus, 85 passes Miller’s test to base 13, and so 85 is a a strong pseudoprime to
base 4.

3 marks. Seen similar on an exercise sheet.

(i) n—1=0—-1= —1 (mod n), so that (n — 1)t = (=1)""! =1 (mod n), since n — 1 is even,
which means that n passes Step 1 of Miller’s test to base n — 1. Subsequent steps replace the
exponent n — 1 by (n —1)/2,(n —1)/4, ... which, when even, continue to give (mod n):

(n—1)®=D/2, (n = 1)0-D/A L = (<1)-D/2, (<1

all of which are congruent to 1 (mod n), until one gets to (n —1)/2* odd, when (n — 1)("_1)/2k =

(—1)("_1)/2k = —1 (mod n). At this point, Miller’s test terminates, with n passing Miller’s test
to base n — 1.
3 marks. Unseen.



(iii) First note that m™ = —1 (mod n). So, m" ! = m(™™) = gmm™™1) = (Em)@™™") =
(=1)(m™™") =1 (mod n), since m™! is even, which means that n passes Step 1 of Miller’s test
to base m. Subsequent steps replace the exponent n — 1 by (n—1)/2,(n —1)/4,... which, when
(m™=1)/2, (m™~1)/4,... is even, continue to give (mod n):
m=D/2 pn=1/4 = gy m™)/2 pm™)/4 = ym(mT /2 ym(mm /e
= (mm)m™ D2 () mT T/ = (1) ()T

all of which are congruent to 1 (mod n), until one gets to (m™~!)/2¥ odd, when m(n—1)/2*
(=1)m™ /2" = _1 (mod n). At this point, Miller’s test terminates, with n passing Miller’s
test to base m.

4 marks. Unseen.

Question 5. All congruences are mod m in what follows. Clearly
ri=1, ro=10r; =10, r3 = 10y = 102, etc.,

and generally r;1 = 107. Tt is also clear that the calculation of the decimal places ¢; repeats
when one of the remainders r; becomes equal to a previous remainder r;. I claim that when
this happens, i = 1. Proof: If i > 1 and 74 = r; (k > 1) is the first repeat then 107 )1 =
rivk = 73 = 10r;_1 and 10 can be cancelled since 2/ m and 5/ m, so that r;_1,x = 71 and
consequently these remainders are equal since both are between 1 and m—1. But this contradicts
the assumption that r;;; = r; is the first repeat.

Thus recurrence starts with rg11 =r1 =1, i.e. ¢1 = gx+1,92 = qr+2 and so on. Thus k is
the smallest number such that 10 = 1, i.e. the order of 10 mod m is k, which is the length of
the period.

9 marks.

Now suppose p is prime, p # 2,p # 5. When the length of the period is 2k we have

Tor+1 = 10%¢ = 1 so that (10¥)? = 1 and since the modulus is prime, this implies 10¥ = +1. But

it cannot be 1 since the period is 2k not k so rg+; = —1, which in view of 0 < r; < p implies
Tk+1 =p — L.
4 marks.

1o = 10,7540 = 10FH =108 . 10 = —10 = —7r9, 71443 = 105 = 10F - 102 = —102 = —1r3,
etc., i.e. rpy;+7; =0, j =1,2,..., but both these are strictly between 0 and p so they must
add up to p.

Finally, note that, since 107; = pg; + 1441 and 1074, = pg;1k + Ti+k+1, We can add these two
equations to give: 10(r; + ritx) = p(¢; + ¢ivk) + (Tiy1 + Titk+1), so that 10p = p(q; + gi+x) +p
(from the previous result), so that g; + ¢;1r = 9, as required.

7 marks. All bookwork from lectures.

Question 6.

(i) o(n) = the sum of the divisors of n which are > 1.

p? has divisors 1,p,p?,...p% 1, p® so o(p?) =1+ p+p? +...p% There are a + 1 terms in this
sum. If o(p®) is odd and p # 2, then p is odd, and so each term in the sum is odd; since the
whole sum is odd, it follows that the number of terms, a + 1, is odd, and so a is even.

Writing n = p{* ... pp* (prime power factorization),

U(n):(1+p1+p%—I—...p?l)...(l—l—pk-i-p%—i—...pZ’“).

If o(n) is odd, then each of the above factors is odd; we have already shown that this implies
n; is even for all p; # 2. If also the power of 2 is even then n is a square (since then all power
would be even), otherwise n is twice a square.

8 marks. From lectures.



(ii) Let » be an even perfect number (where n is perfect means o(n) = 2n). Recall the result
from lectures that any even perfect number n is of the form n = 25(25T! — 1) with 251 — 1
a prime number. First note that if s + 1 were composite, s + 1 = ab, say, with a > 1,b > 1,
then 2571 — 1 = 2% — 1 = (29 — 1)((29)>7! + (2%)*=2 + ... + 1), contradicting the fact that
25t1 — 1 a prime number. Hence s+ 1 is prime, and so s +1 = 2 or s + 1 is odd. In the first
case, n = 6 and so the result is true. In the second case (where s + 1 is odd and so s is even),
consider the integer n/2. First note that 2%,22,23 2% are, respectively 2,4,3,1 (mod 5), and so
24 = (24)F = 1¥* = 1 (mod 5) for any k, and similarly 2**! = 2 (mod 5), 22 = 4 (mod 5)
and 2%+3 = 3 (mod 5). Now, n/2 = 2571(25+1 — 1) = 225 — 251, But 22 is 2 to the power of
a multiple of 4 (since s is even) and so 22° = 1 (mod 5); also 2°~! is 2 to an odd power and so
25"l =2 or 3 (mod 5). Thus, n/2 =22 —25"1 =1— (2 or 3) = (4 or 3) (mod 5). Multiplying
everything (including the modulus) through by 2 gives: n = 8 or 6 (mod 10), as required.

6 marks. Seen similar on an ezercise sheet.

(iii) We have already seen in (ii) that n = 2%(2**! — 1) with 257! — 1 a prime number, and that
indeed s + 1 a prime number, so that s +1 =2 or s + 1 is odd. When n > 6 we have s +1 > 2
and so s+ 1 must be odd and s must be even, s = 2r, say. Then n = 25(2°T1 —1) = k?(2k? — 1),
with k = 27, which is the sum of the consecutive odd cubes up to (2k — 1)3, by the identity
given in the question. The first three values of s + 1 > 2 for which 2°*! — 1 is prime are:
s+1 = 3,5, 7, with corresponding even perfect numbers: n = 22(23-1),24(2°-1),26(2"-1), that
is: n = 28,496, 8128. The corresponding values of k are k = 2',22,23 and so 2k — 1 = 3,7,15,
respectively. This gives: 28 = 13 + 33, 496 = 13 + 33 + 53 + 73, and 8128 = 13 + 33 + ... + 153,
6 marks. Unseen.

Question 7.
(i) First, note P = apQo — Py =ap-1—0=ap = [\/ﬁ]
and Q1 = (n — P?)/Qo = (n — P)/Qo = (n — a3)/1 = n — a}.

Suppose Q = 1 for some k > 1. Then zy = P + v/n so ax, = [zx] = Py + [v/n] = P + ao.
That is, a — P, = ag. Hence,

Piy1=0apQp — Py =ar — P, =ao = Py and Q41 = (n — P2, ,)/Qr = (n —a§)/1 = Q1.
Furthermore, zx11 = (Pr+1 + v/n)/Qr+1 = (P1 ++/n)/Q1 = z1 and so ag1 = [z41] = [21] =
a1. This means that rows P, Q1, 1,01 and Pyxi1,Qgr1,Tk+1,0k+1 are identical and so clearly
ax+1 = Q1,042 = G2,.... So the continued fraction is [ag, a1, .-, G-

6 marks. Bookwork from lectures.

(ii) Draw the following table.

k| Py Qg Tk Gk
0] 0 1 Jn 2d
2d-+
1|2d d 2y
2(2d 1 2d++m 4d

Justification of ag, a1, ao as follows.
ao = [v/n]. But, for all d > 1, (2d)? = 4d? < 4d® + d < 4d?> + 4d + 1 = (2d + 1)? and so
2d < V4d? +d < 2d + 1, so that [\/n] = 2d, i.e. ap = 2d.

a = [2dz\/ﬁ] _ [2d+(£\/ﬁ}] _ [2(13211] =[4] = 4.

a = [2d + /n] = [2d + [\/n]] = [2d + 2d] = [4d] = 4d.
The fact that Q2 = 1 signals recurrence, so that v/n = [2d,4,4d], as required.
8 marks. Seen similar on an exercise sheet.




(iii) d = 3 gives n = 39 i.e. V39 = [6,4,12]. Using po = ap,q0 = 1,p1 = apa1 + 1,1 = a1,
together with the standard recurrence relations: py+1 = ag1Pk +DPk—1 and g1 = ak+19% +qx—1
for convergents p/q of /n, and the identity pi — ng; = (=) 1Qpr1, we get

k| ag Dk qr
0 6 6 1
1 4 25

2112 306 49
3 4 1249 200
4 |12 15294 2449
5 4 62425 9996

This gives three solutions: z = 25,y =4 and z = 1249,y = 200 and z = 62425,y = 9996.
6 marks. Seen similar on an exercise sheet.

Question 8.
(i) Euler’s Criterion: Let p be an odd prime not dividing n. Then (7) = nP=1/2 (mod p).
1 mark. Statement of result from lectures.

(i) By (i), (51) = (-1)®PD2 =1 (mod p) <= 2|(p—1)/2 <= 4|(p—1) <= p =1 (mod 4).
3 marks. Bookwork from lectures.

(iii) By (1), (2) = 2~Y/2 (mod p). Now note that, if 1 < r,s < (p—1)/2 and 2r = +2s (mod p),
then r = +s (mod p) [since (2,p) = 1] and so r = s. Hence the numbers (*) given by:
2-1,2-2,...2-(p—1)/2 have least absolute residues mod p with distinct absolute values. Let
(**) be the same list of numbers, except with each number replaced by its least absolute residue
mod p, which gives (p — 1)/2 nonzero numbers of distinct absolute value, and so their absolute
values must be 1,2,...,(p — 1)/2 in some order. Equating the product of (*) with that of (**)
mod p, and cancelling 1-2-...- (p —1)/2 (coprime to p), gives that 2~1)/2 = (—=1)™ (mod p),
where m is the number of minus signs in (**), which is the same as the number of members z
of (*) in the range (p —1)/2 < z < p. Any odd prime p = £+1,4+3 (mod 8), and in each case, we
need to check whether m is even, in which case (12)) =1, or m is odd, in which case ( p) = -1
Case 1. p=1 (mod 8),sop=8k+1, (p —1)/2 = 4k, and (*) has precisely the 2k numbers
4k + 2,4k + 4,...,8k in the range (p — 1)/2 < z < p. Thus m = 2k is even, and so (p) 1.
Case 2. p=—1 (mod 8),s0p =8k—1, (p—1)/2 =4k —1, and (*) has precisely the 2k numbers
4k,4k +2,...,8k — 2 in the range (p — 1)/2 < z < p. Thus m = 2k is even, and so (p) 1.
Case 3. p =3 (mod 8),sop =8k +3, (p —1)/2 = 4k + 1, and (*) has precisely the 2k + 1
numbers 4k + 2,4k +4,...,8k + 2 in the range (p —1)/2 < < p. Thus m = 2k + 1 is odd, and
SO (%) =-1.

Case 4. p = —3 (mod 8), so p =8k — 3, (p —1)/2 = 4k — 2, and (*) has precisely the 2k — 1
numbers 4k,4k +2,...,8k — 4 in the range (p — 1)/2 < z < p. Thus m = 2k — 1 is odd, and so
(2)=-1

6 marks. Bookwork from lectures.

(iv) Any odd prime is congruent to one of 1,3,5,7 (mod 8).

Case 1. p=1 (mod 8), so p=1 (mod 4). (57 2) — (_71)(%) =1-1=1 [by (i),(ii)]

Case 2. p =3 (mod 8), so p =3 (mod 4). (_TQ) (_71)(%) =(-1)-(-1) =1 [by (i),(i1)]
Case 3. p =5 (mod 8), so p =1 (mod 4). (_72) (_71)(12—)) =1-(-1) = -1 [by (i),(ii)]
Case 4. p =17 (mod 8), so p =3 (mod 4). (_72) = (_71)(%) =(-1)-1= -1 [by (i),(ii)]
Hence (—* 2) = 1 if and only if p = 1 or 3 (mod 8), as required.

4 marks. Seen on an exercise sheet.



(v) First note that 32 = 9 = 1 (mod 8), so that n = (p1p2...px)? +2 = pip3...p2 +2 =
1+2 = 3 (mod 8). Now, let p be prime and p|n. Then p|(p1p2...px)? +2 and so —2 =
(p1p2 - .. pr)? (mod p), giving that (_72) = 1; hence (from part (iv)) p = 1 or 3 (mod 8). Note
that it is impossible for all prime factors of n to be congruent to 1 (mod 8) [since the product
of numbers congruent to 1 (mod 8) is congruent to 1 (mod 8), whereas n = 3 (mod 8)]; hence
at least one prime p dividing n must satify p = 3 (mod 8). Thus p is a new prime, distinct
from p1,po,...,pk, satisfying p = 3 (mod 8) [note that p is distinct from p1,p2, ..., pk, since,
if p = p; then pln = (p1p2...px)% + 2 and p|(p1p2 ... px)?, implying p|2, a contradiction, since
p = 3 (mod 8) and so p is odd]. Finally, suppose that there are only finitely many primes
P1,P2,- -, Pk congruent to 3 (mod 8). The above argument gives a new such prime p distinct
from p1,pe,...,pk, a contradiction; hence there are infinitely many such primes.

6 marks. Unseen.




