Solutions to MATH342 (Number Theory) May 2000 examination

Question 1.

(i) Let the integer d be a common divisor of α and β , that is: $d|\alpha$ and $d|\beta$; then $d|(\alpha + k\beta)$ and so d is a common divisor of $\alpha + k\beta$ and β . Conversely, let d be a common divisor of $\alpha + k\beta$ and β . Then $d|(\alpha + k\beta) - k\beta = \alpha$, so that d is a common divisor of α and β . Hence, the set of common divisors of α , β is the same as the set of common divisors of $\alpha + k\beta$, β , and so the greatest common divisor is the same in each case; that is: $(\alpha, \beta) = (\alpha + k\beta, \beta)$. The same type of argument shows: $(\alpha, \beta) = (\alpha, \beta + k\alpha)$.

4 marks. Bookwork from lectures.

(ii) Repeated applications of part (i) give: $(x^3-2,x^2+1)=(x^3-2-x(x^2+1),x^2+1)=(-x-2,x^2+1)=(-x-2,x^2+1+x(-x-2))=(-x-2,-2x+1)=(-x-2,-2x+1-2(-x-2))=(-x-2,5)=(x+2,5)$, which is 5 when 5|(x+2) and is 1 otherwise. Hence: $(x^3-2,x^2+1)=5$ when $x\equiv 3\pmod 5$ and $(x^3-2,x^2+1)=1$ otherwise.

4 marks. Seen similar on an exercise sheet.

(iii) On dividing $x^n - 1$ by x - 1 we get the standard equation: $x^n - 1 = (x - 1)f(x)$ where $f(x) = x^{n-1} + x^{n-2} + x^{n-3} + \ldots + 1$. Clearly f(x) is an integer (since x is an integer) and so $(x^n - 1)/(x - 1) = f(x)$ is an integer.

Dividing the polynomial $f(x) = x^{n-1} + x^{n-2} + x^{n-3} + \ldots + 1$, found above, by x-1 gives $(x^n-1)/(x-1) = (x-1)g(x) + n$, where $g(x) = x^{n-2} + 2x^{n-3} + 3x^{n-4} + \ldots + (n-1)$. Hence, by part (i), $((x^n-1)/(x-1), x-1) = ((x^n-1)/(x-1) - (x-1)g(x), x-1) = (n, x-1)$. **5 marks.** Unseen.

(iv) Replacing x by n^b and n by q in the equation $x^n - 1 = (x - 1)f(x)$ of part (iii) gives:

$$(n^b)^q - 1 = (n^b - 1)((n^b)^{q-1} + (n^b)^{q-2} + \dots + 1).$$

Multiplying both sides by n^r and then adding $n^r - 1$ to both sides gives

$$n^{bq+r} - 1 = (n^b - 1)(n^{b(q-1)+r} + n^{b(q-2)+r} + \dots + n^r) + (n^r - 1).$$

Since a=bq+r, this is of the form A=BQ+R, where $Q=n^{b(q-1)+r}+n^{b(q-2)+r}+\ldots+n^r$. It follows that (A,B)=(A-BQ,B)=(R,B), and that the first step of Euclid's Algorithm for finding (A,B) is identical to that for finding (a,b), but with a,b,r replaced by $A=n^a-1,B=n^b-1,R=n^r-1$. Repeatedly applying the same argument shows that the same must be true of all subsequent steps of Euclid's Algorithm, and so the final nonzero remainders: (a,b) and (A,B) are related in the same way, that is: $(A,B)=n^{(a,b)}-1$, as required. We can therefore compute $(3^{87}-1,3^{69}-1)=3^{(87,69)}-1=3^3-1=26$.

7 marks. Seen similar in lectures.

Question 2.

(i)
$$x^2 \equiv x \pmod{216} \Rightarrow 216 \mid (x^2 - x) \Rightarrow 8 \mid 216 \mid (x^2 - x) \text{ and } 27 \mid 216 \mid (x^2 - x) \Rightarrow x^2 \equiv x \pmod{8} \text{ and } x^2 \equiv x \pmod{27}.$$

The arrows in the above argument can be reverse (giving the required \iff) by using the facts that $216 = 8 \times 27$, where (8, 27) = 1, and the standard fact that:

$$m \mid a, n \mid a, (m,n) = 1 \Rightarrow mn \mid a.$$
 (*)

2 marks. Seen similar on an exercise sheet.

Now use the standard fact, for any prime p and any a, b with (a, b) = 1, that: $p^r | ab \iff p^r | a$ or $p^r | b$. Since (x, x - 1) = 1, this gives: $x^2 \equiv x \pmod{8} \iff 2^3 | (x^2 - x) \iff 2^3 | x(x - 1) \iff 2^3 | x$ or $2^3 | (x - 1) \iff x \equiv 0$ or $1 \pmod{8}$.

Similarly, $x^2 \equiv x \pmod{27} \iff x \equiv 0 \text{ or } 1 \pmod{27}$. Therefore:

$$x^2 \equiv x \pmod{216} \iff (x \equiv 0 \text{ or } 1 \pmod{8}) \text{ and } (x \equiv 0 \text{ or } 1 \pmod{27}).$$

- (a) $x \equiv 0 \pmod{8}$ and $x \equiv 0 \pmod{27}$. Then $x \equiv 0 \pmod{216}$ by (*).
- (b) $x \equiv 1 \pmod{8}$ and $x \equiv 1 \pmod{27}$. Then $x \equiv 1 \pmod{216}$ by (*).
- (c) $x \equiv 0 \pmod{8}$ and $x \equiv 1 \pmod{27}$. Then x = 8k and $8k \equiv 1 \pmod{27}$. The inverse of 8 is 17 (mod 27), since $8 \times 17 = 136 \equiv 1 \pmod{27}$ [found either by Euclid's Algorithm or trial and error]. Multiplying both sides of the congruence by 17 gives: $k \equiv 17 \pmod{27}$, and so $x = 8k \equiv 136 \pmod{216}$.
- (d) $x \equiv 1 \pmod{8}$ and $x \equiv 0 \pmod{27}$. Then x = 27k and $27k \equiv 1 \pmod{8}$, that is: $3k \equiv 1 \pmod{8}$, since $27 \equiv 3 \pmod{8}$. The inverse of 3 is 3 (mod 8), since $3 \times 3 = 9 \equiv 1 \pmod{8}$ [found either by Euclid's Algorithm or trial and error]. Multiplying both sides of the congruence by 3 gives: $k \equiv 3 \pmod{27}$, and so $x = 27k \equiv 81 \pmod{216}$.

Thus, the solution to the congruence is: $x \equiv 0, 1, 81, 136 \pmod{216}$.

7 marks. Seen similar on an exercise sheet.

- (ii) Fermat's Theorem states that:
 - (a) If p is prime and p does not divide a then $a^{p-1} \equiv 1 \pmod{p}$.
 - (b) For any a (whether p divides a or not), we have: $a^p \equiv a \pmod{p}$.

Proof.

- (a) Consider $a, 2a, \ldots, (p-1)a$ (*). For any j in the range $1 \le j \le (p-1)$, we have $p \not\mid j$. Since also $p \not\mid a$, it follows that $p \not\mid ja$; that is, none of the numbers in (*) is congruent to $0 \pmod p$. Also, imagine $ia \equiv ja \pmod p$ for $i \ne j$ (say, i < j) and $1 \le i, j \le (p-1)$; then $(i-j)a \equiv 0 \pmod p$ and so $p \mid (i-j)a$; but $p \not\mid (i-j)$, since 0 < i-j < p, and so $p \mid a$, a contradiction. Hence $ia \ne ja$ whenever $i \ne j, 1 \le i, j \le (p-1)$. It follows that the numbers: $a, 2a, \ldots, (p-1)a$ are all distinct mod p and none are $0 \mod p$. For each of the p-1 numbers $a, 2a, \ldots, (p-1)a$ there are only p-1 possibilities mod $p: 1, 2, \ldots, p-1$. It follows that $\{a, 2a, \ldots, (p-1)a\}$ is the same set as $\{1, 2, \ldots, p-1\}$, possibly with a different order. Hence $a \cdot 2a \cdot \ldots \cdot (p-1)a \equiv 1 \cdot 2 \cdot \ldots \cdot (p-1)$; that is: $(p-1)!a^{p-1} \equiv (p-1)! \pmod p$. Clearly ((p-1)!, p) = 1 [since each of $1, \ldots, p-1$ is coprime to p], and so $a^{p-1} \equiv 1 \pmod p$, as required.
- (b) If $p \not\mid a$, then we have already shown $a^{p-1} \equiv 1 \pmod{p}$. Multiplying both sides by a gives $a^p \equiv a \pmod{p}$. If $p \mid a$ then $a^p \equiv a \pmod{p}$ is trivially true, since $a^p \equiv 0$ and $a \equiv 0 \pmod{p}$. **5 marks.** Bookwork from lectures.

Suppose $n^2 \equiv -1 \pmod{7}$. Then $7 \not\mid n$ [since if $7 \mid n$ then the LHS would be 0 (mod 7)]. Cubing both sides gives: $n^6 \equiv -1 \pmod{7}$. But, by Fermat's Theorem, $n^6 \equiv 1 \pmod{7}$ since $7 \not\mid n$. Hence $n^2 \equiv -1 \pmod{7}$ is impossible, since $-1 \not\equiv 1 \pmod{7}$.

3 marks. Unseen.

If $p = 8\ell + 5$ and $n^4 \equiv -1 \pmod{p}$ then $p \not\mid n$ [since if $p \mid n$ then the LHS would be 0 \pmod{p}]. Taking both sides to the power of $(2\ell + 1)$ gives: $(n^4)^{(2\ell+1)} \equiv -1 \pmod{p}$, that is: $n^{p-1} \equiv -1 \pmod{p}$. But, by Fermat's Theorem, $n^{p-1} \equiv 1 \pmod{p}$, since $p \not\mid n$. Hence $n^4 \equiv -1 \pmod{p}$ is impossible, since $-1 \not\equiv 1 \pmod{p}$ [since $p \not\equiv 2$]. That is: $p \not\mid (n^4 + 1)$, as required.

3 marks. Unseen.

Question 3. For $n \geq 1$ define $\phi(n)$ to be the number of integers x satisfying $1 \leq x \leq n$ and (x,n)=1. For a prime p and $a \geq 1$, the numbers in $1,2,\ldots,p^a$ which are not coprime to p^a are the multiples of p, namely: $p,2p,\ldots,p^a$, of which there are $p^a/p=p^{a-1}$ in number. These need to be removed from $1,2,\ldots,p^a$, leaving p^a-p^{a-1} numbers coprime to p^a . Hence $\phi(p^a)=p^a-p^{a-1}=p^{a-1}(p-1)$, as required. Writing $n=p_1^{n_1}\ldots p_k^{n_k}$ (prime power factorization),

$$\phi(n) = p_1^{n_1-1}(p-1)\dots p_k^{n_k-1}(p_k-1).$$

3 marks. Bookwork.

(i) Here is a table of $\phi(p^a)$ for small values of the prime p and the exponent $a \geq 1$. Since all rows and columns are strictly increasing, any further entries would be greater than 20 and so are irrelevant.

$a\downarrow$	$p \rightarrow$				7	11	13	17	19	23
1		1	2	4	6	10	12	16	18	22
2		2	6	20						
3		4	18	100						
4		8	54	20 100						
5		16								
6		32								

Now the following give all the ways of writing 20 as a product of entries in distinct columns of the table: 20 = 20, corresponding to $n = 5^2$; $20 = 1 \cdot 20$, corresponding to $n = 2^1 \cdot 5^2$; $20 = 2 \cdot 10$, corresponding to $n = 3^1 \cdot 11^1$ or $n = 2^2 \cdot 11^1$; $20 = 1 \cdot 2 \cdot 10$, corresponding to $n = 2^1 \cdot 3^1 \cdot 11^1$ (note that 4 never occurs as an entry, so that $20 = 4 \cdot 5$ is not available). So, n = 25, 33, 44, 50, 66 are the only n satisfying $\phi(n) = 20$. Finally note that neither 7 nor 14 occur as entries, so that 14 can never be attained as a product of entries; hence there does not exist n for which $\phi(n) = 14$. 9 marks. Seen similar on an exercise sheet.

(ii) For $p \equiv -1 \pmod{12}$ and a even, $\phi(p^a) = p^{a-1}(p-1) \equiv (-1)^{a-1}(-2) \equiv (-1)(-2) \equiv 2 \pmod{12}$.

2 marks. Unseen.

(iii) Let p > 3 be prime and let $b \ge 3$ be odd. Then p is not divisible by 2, 3 and so we can eliminate 0, 2, 3, 4, 6, 8, 9, 10 from $0, 1, \ldots, 11$, leaving 1, 5, 7, 11 as the only possible numbers congruent to $p \pmod{12}$; that is: $\pm 1, \pm 5 \pmod{12}$.

$$\begin{array}{c} p \equiv 1 \pmod{12} \Rightarrow \phi(p^b) = p^{b-1}(p-1) \equiv 1^{b-1} \cdot 0 \equiv 0 \not\equiv 2 \pmod{12}. \\ p \equiv -1 \pmod{12} \Rightarrow \phi(p^b) = p^{b-1}(p-1) \equiv (-1)^{b-1} \cdot (-2) \equiv 1 \cdot (-2) \text{ [since } b-1 \text{ is even]} \\ & \not\equiv 2 \pmod{12}. \\ p \equiv 5 \pmod{12} \Rightarrow \phi(p^b) = p^{b-1}(p-1) \equiv 5^{b-1} \cdot 4 \not\equiv 2 \pmod{12} \text{ [since } (5^{b-1} \cdot 4, 12) = 4 \not\mid 2]. \\ p \equiv -5 \pmod{12} \Rightarrow \phi(p^b) = p^{b-1}(p-1) \equiv (-5)^{b-1} \cdot (-6) \not\equiv 2 \pmod{12} \\ & \text{[since } ((-5)^{b-1} \cdot (-6), 12) = 6 \not\mid 2]. \end{array}$$

6 marks. Unseen.

Question 4.

(i) Miller's test on n to base b (where n be an odd positive integer and b coprime to n). We use $\langle x \rangle$ to denote the least positive residue of $x \mod n$.

Step 1. Let k = n - 1, $\langle b^k \rangle = r$. If r = 1 then continue, otherwise n fails the test.

While k is even and r = 1 then repeat the following.

Step 2. Replace k by k/2, and replace r by the new value of $\langle b^k \rangle$.

When k fails to be even or r fails to be 1:

If r = 1 or n - 1 then n passes the test.

If $r \neq 1$ and $r \neq n-1$ then n fails the test.

5 marks. From lectures.

(a) Base b=2; check (2,85)=1 so that Miller's test is applicable. Now, $2^8=256\equiv 1\pmod{85}$, so $2^{84}\equiv (2^8)^{10}\times 2^4\equiv 1^{44}\times 16\equiv 16\pmod{85}$. Thus, 85 fails Miller's test to base 2 at Step 1, and so 85 is a not even a pseudoprime to base 2.

2 marks. Seen similar on an exercise sheet.

(b) Base b=4; check (4,85)=1 so that Miller's test is applicable. Now, $4^4\equiv 2^8\equiv 1\pmod{85}$, so $4^{84}\equiv (4^4)^{21}\equiv 1^{21}\equiv 1\pmod{85}$. Thus, 85 passes Step 1 of Miller's test, and so 85 is a pseudoprime to base 4. Moving onto Step 2, compute $4^{42}\equiv 2^{84}\equiv 16\pmod{85}$, which is neither 1 nor $85-1\pmod{85}$, and so 85 fails Miller's test to base 4. Thus 85 is a not a strong pseudoprime to base 4.

3 marks. Seen similar on an exercise sheet.

(c) Base b=13; check (13,85)=1 so that Miller's test is applicable. Now, $13^2=169\equiv -1\pmod{85}$, so $13^{84}\equiv (13^2)^{42}\equiv (-1)^{42}\equiv 1\pmod{85}$. Thus, 85 passes Step 1 of Miller's test, and so 85 is a pseudoprime to base 13. Moving onto Step 2, compute $13^{42}\equiv (13^2)^{21}\equiv (-1)^{21}\equiv -1\pmod{85}$. Thus, 85 passes Miller's test to base 13, and so 85 is a strong pseudoprime to base 4.

3 marks. Seen similar on an exercise sheet.

(ii) $n-1 \equiv 0-1 \equiv -1 \pmod{n}$, so that $(n-1)^{n-1} \equiv (-1)^{n-1} \equiv 1 \pmod{n}$, since n-1 is even, which means that n passes Step 1 of Miller's test to base n-1. Subsequent steps replace the exponent n-1 by $(n-1)/2, (n-1)/4, \ldots$ which, when even, continue to give (mod n):

$$(n-1)^{(n-1)/2}, (n-1)^{(n-1)/4}, \ldots \equiv (-1)^{(n-1)/2}, (-1)^{(n-1)/4}, \ldots,$$

all of which are congruent to 1 (mod n), until one gets to $(n-1)/2^k$ odd, when $(n-1)^{(n-1)/2^k} \equiv (-1)^{(n-1)/2^k} \equiv -1 \pmod{n}$. At this point, Miller's test terminates, with n passing Miller's test to base n-1.

3 marks. Unseen.

(iii) First note that $m^m \equiv -1 \pmod{n}$. So, $m^{n-1} = m^{(m^m)} = m^{m(m^{m-1})} = (m^m)^{(m^{m-1})} \equiv (-1)^{(m^{m-1})} \equiv 1 \pmod{n}$, since m^{m-1} is even, which means that n passes Step 1 of Miller's test to base m. Subsequent steps replace the exponent n-1 by $(n-1)/2, (n-1)/4, \ldots$ which, when $(m^{m-1})/2, (m^{m-1})/4, \ldots$ is even, continue to give (mod n):

$$m^{(n-1)/2}, m^{(n-1)/4}, \ldots \equiv m^{(m^m)/2}, m^{(m^m)/4}, \ldots \equiv m^{m(m^{m-1})/2}, m^{m(m^{m-1})/4}, \ldots = (m^m)^{(m^{m-1})/2}, (m^m)^{(m^{m-1})/4}, \ldots \equiv (-1)^{(m^{m-1})/2}, (-1)^{(m^{m-1})/4}, \ldots,$$

all of which are congruent to 1 (mod n), until one gets to $(m^{m-1})/2^k$ odd, when $m^{(n-1)/2^k} \equiv (-1)^{(m^{m-1})/2^k} \equiv -1 \pmod{n}$. At this point, Miller's test terminates, with n passing Miller's test to base m.

4 marks. Unseen.

Question 5. All congruences are mod m in what follows. Clearly

$$r_1 \equiv 1$$
, $r_2 \equiv 10r_1 \equiv 10$, $r_3 \equiv 10r_2 \equiv 10^2$, etc.,

and generally $r_{j+1} \equiv 10^j$. It is also clear that the calculation of the decimal places q_i repeats when one of the remainders r_j becomes equal to a previous remainder r_i . I claim that when this happens, i = 1. Proof: If i > 1 and $r_{i+k} = r_i$ ($k \ge 1$) is the first repeat then $10r_{(i+k)-1} \equiv r_{i+k} = r_i \equiv 10r_{i-1}$ and 10 can be cancelled since $2 \nmid m$ and $5 \nmid m$, so that $r_{i-1+k} \equiv r_{i-1}$ and consequently these remainders are equal since both are between 1 and m-1. But this contradicts the assumption that $r_{i+k} = r_i$ is the first repeat.

Thus recurrence starts with $r_{k+1}=r_1=1$, i.e. $q_1=q_{k+1}, q_2=q_{k+2}$ and so on. Thus k is the smallest number such that $10^k\equiv 1$, i.e. the order of 10 mod m is k, which is the length of the period.

9 marks.

Now suppose p is prime, $p \neq 2, p \neq 5$. When the length of the period is 2k we have $r_{2k+1} \equiv 10^{2k} \equiv 1$ so that $(10^k)^2 \equiv 1$ and since the modulus is prime, this implies $10^k \equiv \pm 1$. But it cannot be 1 since the period is 2k not k so $r_{k+1} \equiv -1$, which in view of $0 < r_i < p$ implies $r_{k+1} = p - 1$.

4 marks.

 $r_2 \equiv 10, r_{k+2} \equiv 10^{k+1} = 10^k \cdot 10 \equiv -10 \equiv -r_2, \quad r_{k+3} \equiv 10^{k+1} = 10^k \cdot 10^2 \equiv -10^2 \equiv -r_3,$ etc., i.e. $r_{k+j} + r_j \equiv 0, \ j = 1, 2, \ldots$, but both these are strictly between 0 and p so they must add up to p.

Finally, note that, since $10r_i = pq_i + r_{i+1}$ and $10r_{i+k} = pq_{i+k} + r_{i+k+1}$, we can add these two equations to give: $10(r_i + r_{i+k}) = p(q_i + q_{i+k}) + (r_{i+1} + r_{i+k+1})$, so that $10p = p(q_i + q_{i+k}) + p$ (from the previous result), so that $q_i + q_{i+k} = 9$, as required.

7 marks. All bookwork from lectures.

Question 6.

(i) $\sigma(n) = \text{the sum of the divisors of } n \text{ which are } \geq 1.$

 p^a has divisors $1, p, p^2, \dots p^{a-1}, p^a$ so $\sigma(p^a) = 1 + p + p^2 + \dots p^a$. There are a+1 terms in this sum. If $\sigma(p^a)$ is odd and $p \neq 2$, then p is odd, and so each term in the sum is odd; since the whole sum is odd, it follows that the number of terms, a+1, is odd, and so a is even. Writing $n = p_1^{n_1} \dots p_k^{n_k}$ (prime power factorization),

$$\sigma(n) = (1 + p_1 + p_1^2 + \dots p_1^{n_1}) \dots (1 + p_k + p_k^2 + \dots p_k^{n_k}).$$

If $\sigma(n)$ is odd, then each of the above factors is odd; we have already shown that this implies n_i is even for all $p_i \neq 2$. If also the power of 2 is even then n is a square (since then all power would be even), otherwise n is twice a square.

8 marks. From lectures.

(ii) Let n be an even perfect number (where n is perfect means $\sigma(n)=2n$). Recall the result from lectures that any even perfect number n is of the form $n=2^s(2^{s+1}-1)$ with $2^{s+1}-1$ a prime number. First note that if s+1 were composite, s+1=ab, say, with a>1,b>1, then $2^{s+1}-1=2^{ab}-1=(2^a-1)((2^a)^{b-1}+(2^a)^{b-2}+\ldots+1)$, contradicting the fact that $2^{s+1}-1$ a prime number. Hence s+1 is prime, and so s+1=2 or s+1 is odd. In the first case, n=6 and so the result is true. In the second case (where s+1 is odd and so s is even), consider the integer n/2. First note that $2^1, 2^2, 2^3, 2^4$ are, respectively $2, 4, 3, 1 \pmod{5}$, and so $2^{4k} \equiv (2^4)^k \equiv 1^k \equiv 1 \pmod{5}$ for any k, and similarly $2^{4k+1} \equiv 2 \pmod{5}$, $2^{4k+2} \equiv 4 \pmod{5}$ and $2^{4k+3} \equiv 3 \pmod{5}$. Now, $n/2 = 2^{s-1}(2^{s+1}-1) = 2^{2s}-2^{s-1}$. But 2^{2s} is 2 to the power of a multiple of 4 (since s is even) and so $2^{2s} \equiv 1 \pmod{5}$; also 2^{s-1} is 2 to an odd power and so $2^{s-1} \equiv 2$ or 3 (mod 5). Thus, $n/2 = 2^{2s} - 2^{s-1} \equiv 1 - (2 \text{ or 3}) \equiv (4 \text{ or 3}) \pmod{5}$. Multiplying everything (including the modulus) through by 2 gives: $n \equiv 8$ or 6 (mod 10), as required.

6 marks. Seen similar on an exercise sheet.

(iii) We have already seen in (ii) that $n=2^s(2^{s+1}-1)$ with $2^{s+1}-1$ a prime number, and that indeed s+1 a prime number, so that s+1=2 or s+1 is odd. When n>6 we have s+1>2 and so s+1 must be odd and s must be even, s=2r, say. Then $n=2^s(2^{s+1}-1)=k^2(2k^2-1)$, with $k=2^r$, which is the sum of the consecutive odd cubes up to $(2k-1)^3$, by the identity given in the question. The first three values of s+1>2 for which $2^{s+1}-1$ is prime are: s+1=3,5,7, with corresponding even perfect numbers: $n=2^2(2^3-1), 2^4(2^5-1), 2^6(2^7-1)$, that is: n=28,496,8128. The corresponding values of k are $k=2^1,2^2,2^3$, and so 2k-1=3,7,15, respectively. This gives: $28=1^3+3^3,496=1^3+3^3+5^3+7^3$, and $8128=1^3+3^3+\ldots+15^3$. 6 marks. Unseen.

Question 7.

(i) First, note $P_1 = a_0 Q_0 - P_0 = a_0 \cdot 1 - 0 = a_0 = [\sqrt{n}]$ and $Q_1 = (n - P_1^2)/Q_0 = (n - P_1^2)/Q_0 = (n - a_0^2)/1 = n - a_0^2$.

Suppose $Q_k = 1$ for some $k \ge 1$. Then $x_k = P_k + \sqrt{n}$ so $a_k = [x_k] = P_k + [\sqrt{n}] = P_k + a_0$. That is, $a_k - P_k = a_0$. Hence,

 $P_{k+1} = a_k Q_k - P_k = a_k - P_k = a_0 = P_1$ and $Q_{k+1} = (n - P_{k+1}^2)/Q_k = (n - a_0^2)/1 = Q_1$. Furthermore, $x_{k+1} = (P_{k+1} + \sqrt{n})/Q_{k+1} = (P_1 + \sqrt{n})/Q_1 = x_1$ and so $a_{k+1} = [x_{k+1}] = [x_1] = a_1$. This means that rows P_1, Q_1, x_1, a_1 and $P_{k+1}, Q_{k+1}, x_{k+1}, a_{k+1}$ are identical and so clearly $a_{k+1} = a_1, a_{k+2} = a_2, \ldots$ So the continued fraction is $[a_0, \overline{a_1, \ldots, a_k}]$.

6 marks. Bookwork from lectures.

(ii) Draw the following table.

Justification of a_0, a_1, a_2 as follows.

 $a_0 = [\sqrt{n}]$. But, for all $d \ge 1$, $(2d)^2 = 4d^2 < 4d^2 + d < 4d^2 + 4d + 1 = (2d+1)^2$ and so $2d < \sqrt{4d^2 + d} < 2d + 1$, so that $[\sqrt{n}] = 2d$, i.e. $a_0 = 2d$.

$$a_1 = \left[\frac{2d + \sqrt{n}}{d}\right] = \left[\frac{2d + [\sqrt{n}]}{d}\right] = \left[\frac{2d + 2d}{d}\right] = [4] = 4.$$

$$a_2 = [2d + \sqrt{n}] = [2d + [\sqrt{n}]] = [2d + 2d] = [4d] = 4d.$$

The fact that $Q_2 = 1$ signals recurrence, so that $\sqrt{n} = [2d, \overline{4, 4d}]$, as required.

8 marks. Seen similar on an exercise sheet.

(iii) d = 3 gives n = 39 i.e. $\sqrt{39} = [6, \overline{4, 12}]$. Using $p_0 = a_0, q_0 = 1, p_1 = a_0 a_1 + 1, q_1 = a_1$, together with the standard recurrence relations: $p_{k+1} = a_{k+1} p_k + p_{k-1}$ and $q_{k+1} = a_{k+1} q_k + q_{k-1}$ for convergents p/q of \sqrt{n} , and the identity $p_k^2 - nq_k^2 = (-1)^{k+1} Q_{k+1}$, we get

$_{k}$	a_k	p_k	q_k
0	6	6	1
1	4	25	4
2	12	306	49
3	4	1249	200
4	12	15294	2449
5	4	62425	9996

This gives three solutions: x = 25, y = 4 and x = 1249, y = 200 and x = 62425, y = 9996. **6 marks.** Seen similar on an exercise sheet.

Question 8.

(i) Euler's Criterion: Let p be an odd prime not dividing n. Then $(\frac{n}{p}) \equiv n^{(p-1)/2} \pmod{p}$. 1 mark. Statement of result from lectures.

(ii) By (i), $(\frac{-1}{p}) \equiv (-1)^{(p-1)/2} \equiv 1 \pmod{p} \iff 2|(p-1)/2 \iff 4|(p-1) \iff p \equiv 1 \pmod{4}$. **3 marks.** Bookwork from lectures.

(iii) By (i), $(\frac{2}{p}) \equiv 2^{(p-1)/2} \pmod{p}$. Now note that, if $1 \le r, s \le (p-1)/2$ and $2r \equiv \pm 2s \pmod{p}$, then $r \equiv \pm s \pmod{p}$ [since (2,p) = 1] and so r = s. Hence the numbers (*) given by: $2 \cdot 1, 2 \cdot 2, \dots 2 \cdot (p-1)/2$ have least absolute residues mod p with distinct absolute values. Let (**) be the same list of numbers, except with each number replaced by its least absolute residue mod p, which gives (p-1)/2 nonzero numbers of distinct absolute value, and so their absolute values must be $1, 2, \ldots, (p-1)/2$ in some order. Equating the product of (*) with that of (**) mod p, and cancelling $1 \cdot 2 \cdot \ldots \cdot (p-1)/2$ (coprime to p), gives that $2^{(p-1)/2} \equiv (-1)^m \pmod{p}$, where m is the number of minus signs in (**), which is the same as the number of members x of (*) in the range (p-1)/2 < x < p. Any odd prime $p \equiv \pm 1, \pm 3 \pmod{8}$, and in each case, we need to check whether m is even, in which case $(\frac{2}{p}) = 1$, or m is odd, in which case $(\frac{2}{p}) = -1$. Case 1. $p \equiv 1 \pmod{8}$, so p = 8k + 1, (p - 1)/2 = 4k, and (*) has precisely the 2k numbers $4k + 2, 4k + 4, \dots, 8k$ in the range (p-1)/2 < x < p. Thus m = 2k is even, and so $(\frac{2}{p}) = 1$. Case 2. $p \equiv -1 \pmod{8}$, so p = 8k - 1, (p - 1)/2 = 4k - 1, and (*) has precisely the 2k numbers $4k, 4k + 2, \dots, 8k - 2$ in the range (p-1)/2 < x < p. Thus m = 2k is even, and so $(\frac{2}{p}) = 1$. Case 3. $p \equiv 3 \pmod{8}$, so p = 8k + 3, (p - 1)/2 = 4k + 1, and (*) has precisely the 2k + 1numbers $4k+2, 4k+4, \ldots, 8k+2$ in the range (p-1)/2 < x < p. Thus m=2k+1 is odd, and

Case 4. $p \equiv -3 \pmod{8}$, so p = 8k - 3, (p - 1)/2 = 4k - 2, and (*) has precisely the 2k - 1 numbers 4k, 4k + 2, ..., 8k - 4 in the range (p - 1)/2 < x < p. Thus m = 2k - 1 is odd, and so $(\frac{2}{p}) = -1$.

6 marks. Bookwork from lectures.

(iv) Any odd prime is congruent to one of 1, 3, 5, 7 (mod 8). Case 1. $p \equiv 1 \pmod{8}$, so $p \equiv 1 \pmod{4}$. $(\frac{-2}{p}) = (\frac{-1}{p})(\frac{2}{p}) = 1 \cdot 1 = 1$ [by (i),(ii)]. Case 2. $p \equiv 3 \pmod{8}$, so $p \equiv 3 \pmod{4}$. $(\frac{-2}{p}) = (\frac{-1}{p})(\frac{2}{p}) = (-1) \cdot (-1) = 1$ [by (i),(ii)]. Case 3. $p \equiv 5 \pmod{8}$, so $p \equiv 1 \pmod{4}$. $(\frac{-2}{p}) = (\frac{-1}{p})(\frac{2}{p}) = 1 \cdot (-1) = -1$ [by (i),(ii)]. Case 4. $p \equiv 7 \pmod{8}$, so $p \equiv 3 \pmod{4}$. $(\frac{-2}{p}) = (\frac{-1}{p})(\frac{2}{p}) = (-1) \cdot 1 = -1$ [by (i),(ii)]. Hence $(\frac{-2}{p}) = 1$ if and only if $p \equiv 1$ or 3 (mod 8), as required.

4 marks. Seen on an exercise sheet.

(v) First note that $3^2 = 9 \equiv 1 \pmod{8}$, so that $n = (p_1p_2 \dots p_k)^2 + 2 = p_1^2p_2^2 \dots p_k^2 + 2 \equiv 1 + 2 \equiv 3 \pmod{8}$. Now, let p be prime and p|n. Then $p|(p_1p_2 \dots p_k)^2 + 2$ and so $-2 \equiv (p_1p_2 \dots p_k)^2 \pmod{p}$, giving that $(\frac{-2}{p}) = 1$; hence (from part (iv)) $p \equiv 1$ or 3 (mod 8). Note that it is impossible for all prime factors of n to be congruent to 1 (mod 8) [since the product of numbers congruent to 1 (mod 8) is congruent to 1 (mod 8), whereas $n \equiv 3 \pmod{8}$]; hence at least one prime p dividing $p \equiv 3 \pmod{8}$ [note that $p \equiv 3 \pmod{8}$. Thus $p \equiv 3 \pmod{8}$]; hence from p_1, p_2, \dots, p_k , satisfying $p \equiv 3 \pmod{8}$ [note that $p \equiv 3 \pmod{p}$, $p \equiv 3 \pmod{8}$, satisfying $p \equiv 3 \pmod{8}$ [note that $p \equiv 3 \pmod{p}$, $p \equiv 3 \pmod{8}$, since, if $p = p_i$ then $p|n = (p_1p_2 \dots p_k)^2 + 2$ and $p|(p_1p_2 \dots p_k)^2$, implying p|2, a contradiction, since $p \equiv 3 \pmod{8}$ and so $p \equiv 3 \pmod{8}$. Finally, suppose that there are only finitely many primes $p \equiv 3 \pmod{8}$, $p \equiv 3 \pmod{8}$. The above argument gives a new such prime $p \equiv 3 \pmod{p}$, $p \equiv 3 \pmod{8}$. The above argument gives a new such prime $p \equiv 3 \pmod{8}$.

6 marks. Unseen.