1. Let «, 8, k,x be integers, and let a, b, n, q,r be positive integers.

(i) Show that («, 8) = (a+ kB, B) = (a, 5 + kav).

(i) Find (2® — 2,22 +1).

(iii) Show that (2™ —1)/(xz — 1) is an integer. Show that

(" =1)/(x = 1),z — 1) = (n,x — 1).

[Hint: first find a polynomial f(z) such that 2" —1 = (z—1) f(z), then divide f(x)
by z — 1 to find a polynomial g(z) such that (z" —1)/(z —1) = (z — 1)g(x) + n.|

(iv) Let a=bg+r, with0<r <band A=n*-1,B=n"-1,R=n"-1.
Find @, a polynomial in n, such that A = BQ + R. Hence or otherwise show
that (n® — 1,n® — 1) = n{*® — 1. Compute (3% — 1,35 — 1),

2. (i) Explain why
2* = 2 (mod 216) <= x* =z (mod 8 and mod 27).

Find all solutions to > = z (mod 216), stating clearly any general results on
congruences which you use in your solution.

(ii) State and prove Fermat’s theorem. Use it to show that, if n is an
integer, then 7 does not divide n? + 1. Show also that if n is an integer and p is
a prime of the form p = 8/ + 5, then p does not divide n* + 1.

3. Define Euler’s ¢-function and show that, for a prime p and a > 1,

$(p") =p" '(p— 1)

Write down a general formula for ¢(n).

(i) Make a table of ¢(p®) for small primes p and integers a > 1, in order
to find all values of n for which ¢(n) = 20. Show that there does not exist n for
which ¢(n) = 14.

(ii) Let p be prime such that p = —1 (mod 12), and let @ be even. Show
that ¢(p*) = 2 (mod 12).

(iii) Let p > 3 be prime. What can p be congruent to modulo 127 Let b > 3
be odd. Show that ¢(p°) # 2 (mod 12).
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4. (i) Describe Miller’s test to base b for the primality of an odd integer n
with (b,n) = 1. Apply Miller’s test to n = 85, using:
(a) base 2. (b) base 4. (c) base 13.

Decide, giving reasons, whether 85 is a pseudoprime or strong pseudoprime to
each of these bases.

[You may find it helpful first to compute 2® and 13% (mod 85)]

(ii) Let n > 3 be an odd integer. Show that n always passes Miller’s test
to base b =n — 1. [You may find it helpful first to show that b = —1 (mod n)].

(iii) Let m > 2 be an even integer. Show that n = m™ + 1 always passes
Miller’s test to base m.

5. Let m be an integer not divisible by 2 or 5. Consider the standard equations
which occur in the calculation of the decimal expansion of %:

1 = T,
107‘1 = mq; +T’2,

10ry = mge + 13, etc.,

where 0 < r; < m and 0 < ¢; <9 for each 7 so that the ¢; are the decimal digits.
Prove that, for j > 0, r;11 = 10/ mod m, and that the length of the period of
1/m in decimal notation is the order of 10 mod m.

Suppose now that m = p is prime (not equal to 2 or 5), and assume that

1
-=0-0q - q%
b

has even period length 2k. Show that 10¥ = —1 (mod p) and deduce that
Tk+1=p— 1.

Show further that the sums ry + rgi0, 73 + 7513, €tc., are all equal to p, and
that the sums ¢1 + gr+1, 92 + Qr+2, @3 + Qx+3, €tc., are all equal to 9.

MATH342 3 4



6. (i) Define o(n) and show, for prime p, that o(p®) =1+ p+p? + ...+ p°.
Prove that, if o(p®) is odd and p # 2, then a is even. Write down a general
formula for o(n). Prove that, if o(n) is odd, then n is either m? or 2m? for some
integer m.

(ii) Show that every even perfect number n satisfies n = 6 or 8 (mod 10),
and so has last digit 6 or 8 when written in base 10.
[You may assume without proof the result from lectures that any even perfect
number n is of the form n = 25(2°t! — 1) with 25! — 1 a prime number.]

(iii) Show that every even perfect number > 6 is the sum of consecutive
odd cubes. Find the first three even perfect numbers > 6 and write each as a
sum of consecutive odd cubes.

[You may use without proof the identity 13 + 3% + ...+ (2k — 1)3 = k*(2k* — 1) ]

7. For the continued fraction expansion [ag, a1, ag, . ..] of zg = \/n where n is
not a square, you may assume the standard formulae:

P, + \/ﬁ (’I’L — PkZ-f—l)
Qk Qr

(i) Show that P, = ag and @Q; = n — a3. Now suppose that Q; = 1 for
some k > 1. Show that Py, = P, Q11 = @1, and that the continued fraction
recurs: [ag, Gy, -, Gk)-

(ii) For the case n = 4d? + d (d > 2), show that the continued fraction
expansion of \/n is [2d, 4, 4d).

(iii) Find three solutions in integers > 0,y > 0 to the equation

Py=0,Q =1, 2, = , ag = [Tg], Pry1 = axQr—Pry, Qri1 =

2 — 39y = 1.

8. Let p denote an odd prime.
(
(

)
(iii) Deduce from Euler’s criterion that (£) = 1if and only if p = 1 (mod 8).
)

i) State Euler’s criterion for quadratic residues.

ii) Deduce from Euler’s criterion that (_71) = lifand only ifp = 1 (mod 4).
2
p

(iv) Show that (_72) =1 if and only if p =1 or 3 (mod 8).

(v) Let p1,pa,...,pr be primes, all congruent to 3 (mod 8), and define n

by: n = (pip2-..pr)? + 2. Show that n = 3 (mod 8). Now, let p|n. Use the
definition of n to show that (_72) =1, and deduce that p =1 or 3 (mod 8). Show

that at least one such prime factor p of n must be congruent to 3 (mod 8) and
hence show that there must be infinitely many primes congruent to 3 (mod 8).
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